com.simiacryptus.mindseye.layers.cudnn.BandReducerLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-cudnn Show documentation
Show all versions of mindseye-cudnn Show documentation
CuDNN Neural Network Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.CudaSystem;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.cudnn.PoolingLayer.PoolingMode;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
@SuppressWarnings("serial")
public class BandReducerLayer extends LayerBase implements MultiPrecision {
private PoolingLayer.PoolingMode mode = PoolingLayer.PoolingMode.Max;
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
private double alpha = 1.0;
public BandReducerLayer() {
super();
}
protected BandReducerLayer(@Nonnull final JsonObject json) {
super(json);
mode = Arrays.stream(PoolingLayer.PoolingMode.values()).filter(i -> i.id == json.get("mode").getAsInt()).findFirst().get();
precision = Precision.valueOf(json.get("precision").getAsString());
alpha = json.get("alpha").getAsDouble();
}
public static BandReducerLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new BandReducerLayer(json);
}
@Nonnull
public Layer getCompatibilityLayer() {
throw new RuntimeException("Not Implemented");
}
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
final Result input = inObj[0];
final TensorList batch = input.getData();
@Nonnull final int[] inputSize = batch.getDimensions();
@Nonnull PoolingLayer impl = new PoolingLayer().setMode(mode).setPrecision(precision)
.setWindowX(inputSize[0])
.setWindowY(inputSize[1])
.setStrideX(inputSize[0])
.setStrideY(inputSize[1])
.setPaddingX(0)
.setPaddingY(0)
.setAlpha(alpha);
@Nullable Result result = impl.evalAndFree(inObj);
impl.freeRef();
return result;
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("alpha", alpha);
json.addProperty("mode", mode.id);
json.addProperty("precision", precision.name());
return json;
}
public PoolingMode getMode() {
return mode;
}
@Nonnull
public BandReducerLayer setMode(final PoolingMode mode) {
this.mode = mode;
return this;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public BandReducerLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
public double getAlpha() {
return alpha;
}
public BandReducerLayer setAlpha(double alpha) {
this.alpha = alpha;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy