com.simiacryptus.mindseye.layers.cudnn.GateBiasLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.mindseye.layers.java.ProductInputsLayer;
import jcuda.jcudnn.*;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Stream;
@SuppressWarnings("serial")
public class GateBiasLayer extends LayerBase implements MultiPrecision {
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
public GateBiasLayer() {
}
protected GateBiasLayer(@Nonnull final JsonObject id) {
super(id);
this.precision = Precision.valueOf(id.getAsJsonPrimitive("precision").getAsString());
}
public static GateBiasLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new GateBiasLayer(json);
}
@Nonnull
public Layer getCompatibilityLayer() {
return this.as(ProductInputsLayer.class);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 2) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result left = inObj[0];
Result right = inObj[1];
final TensorList leftData = left.getData();
final TensorList rightData = right.getData();
@Nonnull final int[] leftDimensions = leftData.getDimensions();
@Nonnull final int[] rightDimensions = rightData.getDimensions();
final int length = leftData.length();
if (3 != leftDimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(leftDimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_ADD, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length,
leftDimensions[2], leftDimensions[1], leftDimensions[0],
leftDimensions[2] * leftDimensions[1] * leftDimensions[0],
leftDimensions[1] * leftDimensions[0],
leftDimensions[0],
1);
@Nullable final CudaTensor lPtr = gpu.getTensor(leftData, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(rightData, precision, MemoryType.Device, false);
//assert lPtr.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(),
precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(),
precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
rPtr.freeRef();
lPtr.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, leftDimensions, precision);
}, leftData), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (left.isAlive()) {
delta.addRef();
left.accumulate(buffer, delta);
}
if (right.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
//assert deltaTensor.size == rightTensor.size;
if (Arrays.equals(rightDimensions, leftDimensions) && length == rightData.length()) {
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
delta.addRef();
return delta;
} else {
@Nonnull final CudaDevice.CudaTensorDescriptor reducedOutputDescriptor = gpu.newTensorDescriptor(precision, rightData.length(),
rightDimensions[2], rightDimensions[1], rightDimensions[0],
rightDimensions[2] * rightDimensions[1] * rightDimensions[0],
rightDimensions[1] * rightDimensions[0],
rightDimensions[0],
1);
long size = (long) precision.size * reducedOutputDescriptor.nStride * rightData.length();
@Nonnull final CudaMemory reducedOutputPtr = gpu.allocate(size, MemoryType.Managed.ifEnabled(), true);
CudaResource reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(
cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN,
cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, false);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
@Nonnull final CudaMemory workspacePtr = gpu.allocate(deltaTensorMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * delta.length(), MemoryType.Device, false);
delta.freeRef();
//outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(),
indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(), workspacePtr.size,
precision.getPointer(1.0), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(),
precision.getPointer(0.0), reducedOutputDescriptor.getPtr(), reducedOutputPtr.getPtr());
reducedOutputPtr.dirty();
deltaTensorMemory.dirty();
Stream.of(deltaTensorMemory, deltaTensor, reduceTensorDescriptor, workspacePtr, indexPtr).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(reducedOutputPtr, reducedOutputDescriptor, precision), rightData.length(), rightDimensions, precision);
}
}, delta);
right.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public final void accumulate(DeltaSet buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
leftData.freeRef();
rightData.freeRef();
left.freeRef();
right.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj)
if (element.isAlive()) {
return true;
}
return false;
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
return json;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public GateBiasLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy