com.simiacryptus.mindseye.layers.cudnn.NProductLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.mindseye.layers.java.ProductInputsLayer;
import jcuda.jcudnn.JCudnn;
import jcuda.jcudnn.cudnnOpTensorDescriptor;
import jcuda.jcudnn.cudnnOpTensorOp;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
import java.util.stream.Stream;
@SuppressWarnings("serial")
public class NProductLayer extends LayerBase implements MultiPrecision {
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
public NProductLayer() {
}
protected NProductLayer(@Nonnull final JsonObject id) {
super(id);
this.precision = Precision.valueOf(id.getAsJsonPrimitive("precision").getAsString());
}
public static NProductLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new NProductLayer(json);
}
@Nonnull
public Layer getCompatibilityLayer() {
return this.as(ProductInputsLayer.class);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length <= 1) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
@Nonnull final int[] dimensions = inObj[0].getData().getDimensions();
final int length = inObj[0].getData().length();
if (3 != dimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(dimensions));
}
for (int i = 1; i < inObj.length; i++) {
TensorList data = inObj[i].getData();
if (Tensor.length(dimensions) != Tensor.length(data.getDimensions())) {
throw new IllegalArgumentException(Arrays.toString(dimensions) + " != " + Arrays.toString(data.getDimensions()));
}
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision,
length, dimensions[2], dimensions[1], dimensions[0],
dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nonnull final TensorList result1 = Arrays.stream(inObj).map(x -> {
TensorList data = x.getData();
data.addRef();
return data;
}).reduce((l, r) -> {
@Nullable final CudaTensor lPtr = gpu.getTensor(l, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(r, precision, MemoryType.Device, false);
//assert lPtr.memory.size == rPtr.memory.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) outputDescriptor.nStride * length * precision.size, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(JCudnn.cudnnOpTensor(gpu.handle, opDescriptor.getPtr(),
precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(),
precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
Arrays.stream(new ReferenceCounting[]{lPtr, rPtr, l, r}).forEach(ReferenceCounting::freeRef);
outputDescriptor.addRef();
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, dimensions, precision);
}).get();
Arrays.stream(new ReferenceCounting[]{opDescriptor, outputDescriptor}).forEach(ReferenceCounting::freeRef);
return result1;
}, Arrays.stream(inObj).map(Result::getData).toArray()), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
for (int index = 0; index < inObj.length; index++) {
final Result input = inObj[index];
if (input.isAlive()) {
final int _index = index;
@Nonnull TensorList data = IntStream.range(0, inObj.length).mapToObj(i -> {
TensorList tensorList = i == _index ? delta : inObj[i].getData();
tensorList.addRef();
return tensorList;
}).reduce((l, r) -> {
return CudaSystem.run(gpu -> {
@Nonnull final CudaResource opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, dimensions[2], dimensions[1], dimensions[0], dimensions[2] * dimensions[1] * dimensions[0], dimensions[1] * dimensions[0], dimensions[0], 1);
@Nullable final CudaTensor lPtr = gpu.getTensor(l, precision, MemoryType.Device, false);
@Nullable final CudaTensor rPtr = gpu.getTensor(r, precision, MemoryType.Device, false);
//assert lPtr.memory.size == rPtr.memory.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) outputDescriptor.nStride * length * precision.size, MemoryType.Device, true);
CudaMemory lPtrMemory = lPtr.getMemory(gpu);
CudaMemory rPtrMemory = rPtr.getMemory(gpu);
CudaSystem.handle(JCudnn.cudnnOpTensor(gpu.handle, opDescriptor.getPtr(),
precision.getPointer(1.0), lPtr.descriptor.getPtr(), lPtrMemory.getPtr(),
precision.getPointer(1.0), rPtr.descriptor.getPtr(), rPtrMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
lPtrMemory.dirty();
rPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
rPtrMemory.freeRef();
Stream.of(lPtr, rPtr, opDescriptor, l, r).forEach(ReferenceCounting::freeRef);
return CudaTensorList.wrap(CudaTensor.wrap(outputPtr, outputDescriptor, precision), length, dimensions, precision);
}, l, r);
}).get();
input.accumulate(buffer, data);
}
}
delta.freeRef();
}) {
@Override
public final void accumulate(DeltaSet buffer, TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
for (int i = 0; i < inObj.length; i++) {
inObj[i].getData().freeRef();
}
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj)
if (element.isAlive()) {
return true;
}
return false;
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
return json;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public NProductLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy