com.simiacryptus.mindseye.layers.cudnn.SquareActivationLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-cudnn Show documentation
Show all versions of mindseye-cudnn Show documentation
CuDNN Neural Network Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.mindseye.layers.java.ProductInputsLayer;
import jcuda.jcudnn.cudnnOpTensorDescriptor;
import jcuda.jcudnn.cudnnOpTensorOp;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
@SuppressWarnings("serial")
public class SquareActivationLayer extends LayerBase implements MultiPrecision {
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
private double alpha = 1.0;
public SquareActivationLayer() {
}
protected SquareActivationLayer(@Nonnull final JsonObject id) {
super(id);
this.precision = Precision.valueOf(id.getAsJsonPrimitive("precision").getAsString());
this.alpha = id.getAsJsonPrimitive("alpha").getAsDouble();
}
public static SquareActivationLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new SquareActivationLayer(json);
}
@Nonnull
public Layer getCompatibilityLayer() {
return this.as(ProductInputsLayer.class);
}
@Nullable
@Override
public Result evalAndFree(@Nonnull final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
if (inObj.length != 1) {
throw new IllegalArgumentException("inObj.length=" + inObj.length);
}
Result input = inObj[0];
final TensorList inputData = input.getData();
@Nonnull final int[] dimensions = inputData.getDimensions();
final int length = inputData.length();
if (3 != dimensions.length) {
throw new IllegalArgumentException("dimensions=" + Arrays.toString(dimensions));
}
return new Result(CudaSystem.run(gpu -> {
@Nonnull final CudaResource opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length,
dimensions[2], dimensions[1], dimensions[0],
dimensions[2] * dimensions[1] * dimensions[0],
dimensions[1] * dimensions[0],
dimensions[0],
1);
@Nullable final CudaTensor inputTensor = gpu.getTensor(inputData, precision, MemoryType.Device, false);
//assert inputTensor.size == rPtr.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory lPtrMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(),
precision.getPointer(alpha), inputTensor.descriptor.getPtr(), lPtrMemory.getPtr(),
precision.getPointer(1.0), inputTensor.descriptor.getPtr(), lPtrMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
assert CudaDevice.isThreadDeviceId(gpu.getDeviceId());
outputPtr.dirty();
lPtrMemory.dirty();
outputPtr.dirty();
lPtrMemory.freeRef();
inputTensor.freeRef();
opDescriptor.freeRef();
CudaTensor cudaTensor = CudaTensor.wrap(outputPtr, outputDescriptor, precision);
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, inputData), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (input.isAlive()) {
@Nonnull TensorList data = CudaSystem.run(gpu -> {
@Nonnull final CudaResource opDescriptor = gpu.newOpDescriptor(cudnnOpTensorOp.CUDNN_OP_TENSOR_MUL, precision);
@Nonnull final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length,
dimensions[2], dimensions[1], dimensions[0],
dimensions[2] * dimensions[1] * dimensions[0],
dimensions[1] * dimensions[0],
dimensions[0],
1);
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta, precision, MemoryType.Device, true);
delta.freeRef();
@Nullable final CudaTensor inputTensor = gpu.getTensor(input.getData(), precision, MemoryType.Device, false);
//assert deltaTensor.size == inputTensor.size;
@Nonnull final CudaMemory outputPtr = gpu.allocate((long) precision.size * outputDescriptor.nStride * length, MemoryType.Device, true);
CudaMemory deltaTensorMemory = deltaTensor.getMemory(gpu);
CudaMemory rightTensorMemory = inputTensor.getMemory(gpu);
CudaSystem.handle(gpu.cudnnOpTensor(opDescriptor.getPtr(),
precision.getPointer(2), deltaTensor.descriptor.getPtr(), deltaTensorMemory.getPtr(),
precision.getPointer(alpha), inputTensor.descriptor.getPtr(), rightTensorMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputPtr.getPtr()));
deltaTensorMemory.dirty();
rightTensorMemory.dirty();
outputPtr.dirty();
deltaTensorMemory.freeRef();
rightTensorMemory.freeRef();
CudaTensor cudaTensor = new CudaTensor(outputPtr, outputDescriptor, precision);
Arrays.stream(new ReferenceCounting[]{deltaTensor, inputTensor, opDescriptor, outputDescriptor}).forEach(ReferenceCounting::freeRef);
outputPtr.freeRef();
return CudaTensorList.wrap(cudaTensor, length, dimensions, precision);
}, delta);
input.accumulate(buffer, data);
} else {
delta.freeRef();
}
}) {
@Override
public void accumulate(final DeltaSet buffer, final TensorList delta) {
getAccumulator().accept(buffer, delta);
}
@Override
protected void _free() {
inputData.freeRef();
input.freeRef();
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj)
if (element.isAlive()) {
return true;
}
return false;
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
json.addProperty("alpha", alpha);
return json;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public SquareActivationLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
public double getAlpha() {
return alpha;
}
public SquareActivationLayer setAlpha(double alpha) {
this.alpha = alpha;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy