com.simiacryptus.mindseye.layers.cudnn.StochasticSamplingSubnetLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-cudnn Show documentation
Show all versions of mindseye-cudnn Show documentation
CuDNN Neural Network Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.DataSerializer;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.mindseye.layers.ValueLayer;
import com.simiacryptus.mindseye.layers.WrapperLayer;
import com.simiacryptus.mindseye.network.CountingResult;
import com.simiacryptus.mindseye.network.DAGNetwork;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.Map;
import java.util.Random;
import java.util.stream.IntStream;
@SuppressWarnings("serial")
public class StochasticSamplingSubnetLayer extends WrapperLayer implements StochasticComponent, MultiPrecision {
private final int samples;
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
private long seed = System.nanoTime();
private long layerSeed = System.nanoTime();
public StochasticSamplingSubnetLayer(final Layer subnetwork, final int samples) {
super(subnetwork);
this.samples = samples;
}
protected StochasticSamplingSubnetLayer(@Nonnull final JsonObject json, Map rs) {
super(json, rs);
samples = json.getAsJsonPrimitive("samples").getAsInt();
seed = json.getAsJsonPrimitive("seed").getAsInt();
layerSeed = json.getAsJsonPrimitive("layerSeed").getAsInt();
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
}
public static StochasticSamplingSubnetLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new StochasticSamplingSubnetLayer(json, rs);
}
public static Result average(final Result[] samples, final Precision precision) {
PipelineNetwork gateNetwork = new PipelineNetwork(1);
gateNetwork.wrap(new ProductLayer().setPrecision(precision),
gateNetwork.getInput(0),
gateNetwork.wrap(new ValueLayer(new Tensor(1, 1, 1).mapAndFree(v -> 1.0 / samples.length)), new DAGNode[]{}))
.freeRef();
SumInputsLayer sumInputsLayer = new SumInputsLayer().setPrecision(precision);
try {
return gateNetwork.evalAndFree(sumInputsLayer.evalAndFree(samples));
} finally {
sumInputsLayer.freeRef();
gateNetwork.freeRef();
}
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
if (seed == 0) {
return getInner().eval(inObj);
}
Result[] counting = Arrays.stream(inObj).map(r -> {
return new CountingResult(r, samples);
}).toArray(i -> new Result[i]);
return average(Arrays.stream(getSeeds()).mapToObj(seed -> {
Layer inner = getInner();
if (inner instanceof DAGNetwork) {
((DAGNetwork) inner).visitNodes(node -> {
Layer layer = node.getLayer();
if (layer instanceof StochasticComponent) {
((StochasticComponent) layer).shuffle(seed);
}
if (layer instanceof MultiPrecision>) {
((MultiPrecision) layer).setPrecision(precision);
}
});
}
if (inner instanceof MultiPrecision>) {
((MultiPrecision) inner).setPrecision(precision);
}
if (inner instanceof StochasticComponent) {
((StochasticComponent) inner).shuffle(seed);
}
inner.setFrozen(isFrozen());
return inner.eval(counting);
}).toArray(i -> new Result[i]), precision);
}
public long[] getSeeds() {
Random random = new Random(seed + layerSeed);
return IntStream.range(0, this.samples).mapToLong(i -> random.nextLong()).toArray();
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJson(resources, dataSerializer);
json.addProperty("samples", samples);
json.addProperty("seed", seed);
json.addProperty("layerSeed", layerSeed);
json.addProperty("precision", precision.name());
return json;
}
@Override
public void shuffle(final long seed) {
this.seed = seed;
}
@Override
public void clearNoise() {
seed = 0;
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public StochasticSamplingSubnetLayer setPrecision(Precision precision) {
this.precision = precision;
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy