com.simiacryptus.mindseye.layers.cudnn.conv.FullyConnectedLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn.conv;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.CudaSystem;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.Explodable;
import com.simiacryptus.mindseye.layers.java.FullyConnectedReferenceLayer;
import com.simiacryptus.mindseye.layers.java.ReshapeLayer;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.util.FastRandom;
import com.simiacryptus.util.JsonUtil;
import com.simiacryptus.util.Util;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.function.DoubleSupplier;
@SuppressWarnings("serial")
public class FullyConnectedLayer extends LayerBase implements MultiPrecision, Explodable {
private static final Logger log = LoggerFactory.getLogger(FullyConnectedLayer.class);
@Nullable
public final int[] inputDims;
@Nullable
public final int[] outputDims;
@Nullable
private final Tensor weights;
private Precision precision = CudaSettings.INSTANCE().defaultPrecision;
private int batchBands = 0;
private FullyConnectedLayer() {
outputDims = null;
weights = null;
inputDims = null;
}
public FullyConnectedLayer(@Nonnull final int[] inputDims, @Nonnull final int[] outputDims) {
final int inputs = Tensor.length(inputDims);
this.inputDims = Arrays.copyOf(inputDims, inputDims.length);
this.outputDims = Arrays.copyOf(outputDims, outputDims.length);
final int outs = Tensor.length(outputDims);
weights = new Tensor(inputs, outs);
setWeights(() -> {
final double ratio = Math.sqrt(6. / (inputs + outs + 1));
final double fate = Util.R.get().nextDouble();
final double v = (1 - 2 * fate) * ratio;
return v;
});
}
protected FullyConnectedLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
outputDims = JsonUtil.getIntArray(json.getAsJsonArray("outputDims"));
inputDims = JsonUtil.getIntArray(json.getAsJsonArray("inputDims"));
@Nullable final Tensor data = Tensor.fromJson(json.get("weights"), rs);
weights = data;
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
}
public static FullyConnectedLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new FullyConnectedLayer(json, rs);
}
@Override
protected void _free() {
weights.freeRef();
super._free();
}
@Nonnull
public FullyConnectedLayer set(final double[] data) {
weights.set(data);
return this;
}
@Nonnull
public FullyConnectedLayer set(@Nonnull final Tensor data) {
weights.set(data);
return this;
}
@Nonnull
public FullyConnectedLayer setWeightsLog(final double value) {
getWeights().setByCoord(c -> (FastRandom.INSTANCE.random() - 0.5) * Math.pow(10, value));
return this;
}
@Nonnull
public Layer getCompatibilityLayer() {
return new FullyConnectedReferenceLayer(inputDims, outputDims).set(getWeights());
}
@Nullable
@Override
public Result evalAndFree(final Result... inObj) {
if (!CudaSystem.isEnabled()) return getCompatibilityLayer().evalAndFree(inObj);
Layer explode = explode();
Result eval = explode.evalAndFree(inObj);
explode.freeRef();
return eval;
}
public Layer explodeAndFree() {
Layer explode = explode();
freeRef();
return explode;
}
@Nonnull
public Layer explode() {
int inputVol = Tensor.length(inputDims);
int outVol = Tensor.length(outputDims);
@Nonnull PipelineNetwork network = new PipelineNetwork(1);
network.wrap(new ReshapeLayer(1, 1, inputVol)).freeRef();
@Nullable Tensor tensor = this.weights.reshapeCast(1, 1, inputVol * outVol);
@Nonnull ConvolutionLayer convolutionLayer = new ConvolutionLayer(1, 1, inputVol, outVol)
.set(tensor)
.setBatchBands(getBatchBands());
@Nonnull ExplodedConvolutionGrid grid = convolutionLayer
.getExplodedNetwork();
convolutionLayer.freeRef();
tensor.freeRef();
grid.add(network.getHead());
grid.freeRef();
network.wrap(new ReshapeLayer(outputDims)).freeRef();
network.setName(getName());
return network;
}
@Nonnull
@Override
public JsonObject getJson(Map resources, @Nonnull DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.add("outputDims", JsonUtil.getJson(outputDims));
json.add("inputDims", JsonUtil.getJson(inputDims));
@Nullable Tensor tensor = getWeights();
json.add("weights", tensor.getJson(resources, dataSerializer));
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public List state() {
return Arrays.asList(getWeights().getData());
}
@Override
public Precision getPrecision() {
return precision;
}
@Nonnull
@Override
public FullyConnectedLayer setPrecision(final Precision precision) {
this.precision = precision;
return this;
}
@Nullable
public Tensor getWeights() {
return weights;
}
@Nonnull
public FullyConnectedLayer setWeights(@Nonnull final DoubleSupplier f) {
Arrays.parallelSetAll(getWeights().getData(), i -> f.getAsDouble());
return this;
}
public int getBatchBands() {
return batchBands;
}
@Nonnull
public FullyConnectedLayer setBatchBands(int batchBands) {
this.batchBands = batchBands;
return this;
}
public FullyConnectedLayer set(DoubleSupplier fn) {
weights.set(fn);
return this;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy