com.simiacryptus.mindseye.layers.cudnn.ImgLinearSubnetLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonArray;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.lang.ReferenceCountingBase;
import com.simiacryptus.ref.wrappers.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.function.Function;
@SuppressWarnings("serial")
public class ImgLinearSubnetLayer extends LayerBase implements MultiPrecision {
private static final Logger logger = LoggerFactory.getLogger(ImgLinearSubnetLayer.class);
private final RefList legs = new RefArrayList<>();
private Precision precision = CudaSettings.INSTANCE().getDefaultPrecision();
private boolean parallel = true;
public ImgLinearSubnetLayer() {
super();
}
protected ImgLinearSubnetLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
setParallel(json.get("parallel").getAsBoolean());
JsonArray jsonArray = json.get("legs").getAsJsonArray();
for (int i = 0; i < jsonArray.size(); i++) {
legs.add(new SubnetLeg(jsonArray.get(i).getAsJsonObject(), rs));
}
}
@Nullable
public RefList getLegs() {
return legs == null ? null : legs.addRef();
}
@Override
public Precision getPrecision() {
return precision;
}
@Override
public void setPrecision(Precision precision) {
this.precision = precision;
}
public boolean isParallel() {
return parallel;
}
public void setParallel(boolean parallel) {
this.parallel = parallel;
}
@Override
public void setFrozen(final boolean frozen) {
legs.stream().map(x -> {
try {
return x.inner.addRef();
} finally {
x.freeRef();
}
}).forEach(x -> {
try {
x.setFrozen(frozen);
} finally {
RefUtil.freeRef(x);
}
});
}
@Nonnull
@SuppressWarnings("unused")
public static ImgLinearSubnetLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgLinearSubnetLayer(json, rs);
}
public void add(int from, int to, @Nullable Layer layer) {
legs.add(new SubnetLeg(layer, from, to));
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
Result input = inObj[0].addRef();
RefUtil.freeRef(inObj);
TensorList inputData = input.getData();
@Nonnull final int[] inputDims = inputData.getDimensions();
assert 3 == inputDims.length;
int length = inputData.length();
int maxBand = legs.stream().mapToInt(x -> {
int temp_06_0003 = x.toBand;
x.freeRef();
return temp_06_0003;
}).max().getAsInt();
assert maxBand == inputDims[2] : maxBand + " != " + inputDims[2];
assert RefIntStream.range(0, maxBand).allMatch(i -> 1 == legs.stream().filter(x -> {
boolean temp_06_0004 = x.fromBand <= i && x.toBand > i;
x.freeRef();
return temp_06_0004;
}).count());
CudaTensor passback = CudaSystem.run(RefUtil.wrapInterface((RefFunction) gpu -> {
CudaTensor cudaTensor = new CudaTensor(gpu.allocate(inputData.getElements() * precision.size, MemoryType.Device, true),
gpu.newTensorDescriptor(precision, length, inputDims[2], inputDims[1], inputDims[0]), precision);
gpu.freeRef();
return cudaTensor;
}, inputData.addRef()));
inputData.freeRef();
AtomicInteger counter = new AtomicInteger(0);
Result[] legResults = legs.stream()
.map(RefUtil.wrapInterface((Function super SubnetLeg, ? extends Result>) leg -> {
ImgBandSelectLayer imgBandSelectLayer = new ImgBandSelectLayer(leg.fromBand, leg.toBand);
try {
assert leg.inner != null;
TensorList legData = Result.getData(imgBandSelectLayer.eval(input.addRef()));
Result.Accumulator accumulator = new LegAccumulator(passback.addRef(), leg.addRef(), length, inputDims, counter, legs.addRef(), precision, input.getAccumulator());
return leg.inner.eval(new Result(legData, accumulator));
} finally {
imgBandSelectLayer.freeRef();
leg.freeRef();
}
}, passback, input))
.toArray(i -> new Result[i]);
SumInputsLayer sumInputsLayer = new SumInputsLayer();
sumInputsLayer.setParallel(parallel);
sumInputsLayer.setPrecision(precision);
try {
return sumInputsLayer.eval(legResults);
} finally {
sumInputsLayer.freeRef();
}
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
json.addProperty("parallel", isParallel());
JsonArray jsonArray = new JsonArray();
legs.stream().map(x -> {
try {
return x.getJson(resources, dataSerializer);
} finally {
x.freeRef();
}
}).forEach(element -> jsonArray.add(element));
json.add("legs", jsonArray);
return json;
}
@Nonnull
@Override
public RefList state() {
return new RefArrayList<>();
}
public void _free() {
if (null != legs)
legs.freeRef();
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ImgLinearSubnetLayer addRef() {
return (ImgLinearSubnetLayer) super.addRef();
}
public static class SubnetLeg extends ReferenceCountingBase {
@Nullable
private final Layer inner;
private final int fromBand;
private final int toBand;
public SubnetLeg(@Nullable final Layer inner, final int fromBand, final int toBand) {
this.inner = inner;
this.fromBand = fromBand;
this.toBand = toBand;
}
protected SubnetLeg(@Nonnull final JsonObject json, Map rs) {
fromBand = json.getAsJsonPrimitive("fromBand").getAsInt();
toBand = json.getAsJsonPrimitive("toBand").getAsInt();
inner = Layer.fromJson(json.getAsJsonObject("network"), rs);
}
@Nonnull
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = new JsonObject();
json.addProperty("fromBand", fromBand);
json.addProperty("toBand", toBand);
assert inner != null;
json.add("network", inner.getJson(resources, dataSerializer));
return json;
}
public void _free() {
if (null != inner)
inner.freeRef();
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
SubnetLeg addRef() {
return (SubnetLeg) super.addRef();
}
}
private static class LegAccumulator extends Result.Accumulator {
private final CudaTensor passback;
private final SubnetLeg leg;
private final int length;
private final int[] inputDims;
private final AtomicInteger counter;
private RefList legs;
private Precision precision;
private Result.Accumulator accumulator;
public LegAccumulator(CudaTensor passback, SubnetLeg leg, int length, int[] inputDims, AtomicInteger counter, RefList legs, Precision precision, Result.Accumulator accumulator) {
this.passback = passback;
this.leg = leg;
this.length = length;
this.inputDims = inputDims;
this.counter = counter;
this.legs = legs;
this.precision = precision;
this.accumulator = accumulator;
}
@Override
public void accept(@Nullable DeltaSet ctx, @Nonnull TensorList delta) {
int[] outputDimensions = delta.getDimensions();
synchronized (passback) {
CudaSystem.run(RefUtil.wrapInterface((RefConsumer) gpu -> {
final CudaDevice.CudaTensorDescriptor viewDescriptor = gpu.newTensorDescriptor(precision, length,
outputDimensions[2], outputDimensions[1], outputDimensions[0],
inputDims[2] * inputDims[1] * inputDims[0], inputDims[1] * inputDims[0], inputDims[0], 1);
final int byteOffset = viewDescriptor.cStride * leg.fromBand * precision.size;
assert delta.length() == length;
assert passback.getDeviceId() == gpu.getDeviceId();
@Nullable final CudaTensor deltaTensor = gpu.getTensor(delta.addRef(), precision,
MemoryType.Device, true);
@Nonnull final CudaMemory passbackBuffer = passback.getMemory(gpu.addRef());
CudaMemory errorPtrMemory = deltaTensor.getMemory(gpu.addRef());
assert passbackBuffer != null;
passbackBuffer.synchronize();
assert errorPtrMemory != null;
gpu.cudnnTransformTensor(precision.getPointer(1.0), deltaTensor.descriptor.getPtr(),
errorPtrMemory.getPtr(), precision.getPointer(0.0), viewDescriptor.getPtr(),
passbackBuffer.getPtr().withByteOffset(byteOffset));
gpu.freeRef();
deltaTensor.freeRef();
viewDescriptor.freeRef();
errorPtrMemory.dirty();
errorPtrMemory.freeRef();
passbackBuffer.dirty();
passbackBuffer.freeRef();
}, passback.addRef(), delta.addRef(),
leg.addRef()), passback.addRef());
}
delta.freeRef();
if (counter.incrementAndGet() >= legs.size()) {
counter.set(0);
DeltaSet buffer = ctx == null ? null : ctx.addRef();
this.accumulator.accept(buffer, new CudaTensorList(passback.addRef(), length, inputDims, precision));
}
if (null != ctx)
ctx.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
passback.freeRef();
accumulator.freeRef();
leg.freeRef();
legs.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy