com.simiacryptus.mindseye.layers.cudnn.ImgModulusCropLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.DataSerializer;
import com.simiacryptus.mindseye.lang.LayerBase;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.TensorList;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefList;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
@SuppressWarnings("serial")
public class ImgModulusCropLayer extends LayerBase implements MultiPrecision {
private static final Logger log = LoggerFactory.getLogger(ImgModulusCropLayer.class);
private boolean roundUp = false;
private int sizeX;
private int sizeY;
private int offsetX;
private int offsetY;
private Precision precision = CudaSettings.INSTANCE().getDefaultPrecision();
private ImgModulusCropLayer() {
}
public ImgModulusCropLayer(int sizeX, int sizeY, int offsetX, int offsetY) {
this.sizeX = sizeX;
this.sizeY = sizeY;
this.offsetX = offsetX;
this.offsetY = offsetY;
}
public ImgModulusCropLayer(int sizeX, int sizeY) {
this(sizeX, sizeY, 0, 0);
}
protected ImgModulusCropLayer(@Nonnull final JsonObject json) {
super(json);
setRoundUp(json.get("roundUp").getAsBoolean());
sizeX = json.get("sizeX").getAsInt();
sizeY = json.get("sizeY").getAsInt();
offsetX = json.get("offsetX").getAsInt();
offsetY = json.get("offsetY").getAsInt();
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
}
public int getOffsetX() {
return offsetX;
}
public void setOffsetX(int offsetX) {
this.offsetX = offsetX;
}
@Override
public Precision getPrecision() {
return precision;
}
@Override
public void setPrecision(final Precision precision) {
this.precision = precision;
}
public boolean isRoundUp() {
return roundUp;
}
public void setRoundUp(boolean roundUp) {
this.roundUp = roundUp;
}
@Nonnull
@SuppressWarnings("unused")
public static ImgModulusCropLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgModulusCropLayer(json);
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
assert inObj.length == 1;
TensorList temp_40_0004 = inObj[0].getData();
@Nonnull
int[] dimensions = temp_40_0004.getDimensions();
temp_40_0004.freeRef();
int inputWidth = dimensions[0];
int inputHeight = dimensions[1];
int sizeX = Math.abs(this.sizeX);
int paddingX = sizeX - (inputWidth - offsetX) % sizeX;
while (paddingX < 0)
paddingX += sizeX;
while (paddingX >= sizeX)
paddingX -= sizeX;
if (this.sizeX < 0 && paddingX + inputWidth > sizeX)
paddingX -= sizeX;
while (paddingX > 0)
paddingX -= sizeX;
int sizeY = Math.abs(this.sizeY);
int paddingY = sizeY - (inputHeight - offsetY) % sizeY;
while (paddingY < 0)
paddingY += sizeY;
while (paddingY >= sizeY)
paddingY -= sizeY;
if (this.sizeY < 0 && paddingY + inputHeight > sizeY)
paddingY -= sizeY;
while (paddingY > 0)
paddingY -= sizeY;
int ouputWidth = inputWidth + paddingX;
int outputHeight = inputHeight + paddingY;
assert ouputWidth > 0;
assert outputHeight > 0;
if (ouputWidth == inputWidth) {
if (outputHeight == inputHeight) {
Result temp_40_0002 = inObj[0].addRef();
RefUtil.freeRef(inObj);
return temp_40_0002;
}
}
ImgCropLayer imgCropLayer = new ImgCropLayer(ouputWidth, outputHeight);
imgCropLayer.setPrecision(precision);
imgCropLayer.setRoundUp(isRoundUp());
Result result = imgCropLayer.eval(inObj);
imgCropLayer.freeRef();
return result;
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("roundUp", roundUp);
json.addProperty("sizeY", sizeY);
json.addProperty("sizeX", sizeX);
json.addProperty("offsetX", offsetX);
json.addProperty("offsetY", offsetY);
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ImgModulusCropLayer addRef() {
return (ImgModulusCropLayer) super.addRef();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy