All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.simiacryptus.mindseye.layers.cudnn.ImgTileCycleLayer Maven / Gradle / Ivy

/*
 * Copyright (c) 2019 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.cudnn;

import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefFunction;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;

@SuppressWarnings("serial")
public class ImgTileCycleLayer extends LayerBase implements MultiPrecision {
  private static final Logger log = LoggerFactory.getLogger(ImgTileCycleLayer.class);
  private double xPos = 0.5;
  private double yPos = 0.5;

  private Precision precision = CudaSettings.INSTANCE().getDefaultPrecision();

  public ImgTileCycleLayer() {
  }

  protected ImgTileCycleLayer(@Nonnull final JsonObject json) {
    super(json);
    this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
  }

  @Nonnull
  public Layer getCompatibilityLayer() {
    return this.as(com.simiacryptus.mindseye.layers.java.ImgCropLayer.class);
  }

  @Override
  public Precision getPrecision() {
    return precision;
  }

  @Override
  public void setPrecision(final Precision precision) {
    this.precision = precision;
  }

  public double getxPos() {
    return xPos;
  }

  public double getyPos() {
    return yPos;
  }

  public void setXPos(double xPos) {
    this.xPos = xPos;
  }

  public void setYPos(double yPos) {
    this.yPos = yPos;
  }

  @Nonnull
  @SuppressWarnings("unused")
  public static ImgTileCycleLayer fromJson(@Nonnull final JsonObject json, Map rs) {
    return new ImgTileCycleLayer(json);
  }

  @Nonnull
  public static CudaTensor copy(@Nonnull final CudnnHandle gpu, @Nonnull final CudaTensor input, final int length,
                                @Nonnull Precision precision, final int splitX, final int splitY) {
    CudaMemory inputTensorMemory = input.getMemory(gpu.addRef());
    final CudaDevice.CudaTensorDescriptor imageDescriptor = gpu.newTensorDescriptor(precision, length,
        input.descriptor.channels, input.descriptor.height, input.descriptor.width, input.descriptor.nStride,
        input.descriptor.cStride, input.descriptor.hStride, input.descriptor.wStride);
    @Nonnull final CudaMemory outputBuffer = gpu.allocate((long) length * imageDescriptor.nStride * precision.size,
        MemoryType.Managed.ifEnabled(), true);
    int splitY2 = input.descriptor.height - splitY;
    int splitX2 = input.descriptor.width - splitX;
    {
      final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(precision, length,
          input.descriptor.channels, splitY, splitX, input.descriptor.nStride, input.descriptor.cStride,
          input.descriptor.hStride, input.descriptor.wStride);
      assert inputTensorMemory != null;
      CudaSystem.handle(gpu.cudnnTransformTensor(precision.getPointer(1.0), tileDescriptor.getPtr(),
          inputTensorMemory.getPtr().withByteOffset(0 * precision.size), precision.getPointer(0.0),
          tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(
              (splitY2 * input.descriptor.hStride + splitX2 * input.descriptor.wStride) * precision.size)));
      tileDescriptor.freeRef();
    }
    {
      final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(precision, length,
          input.descriptor.channels, splitY2, splitX, input.descriptor.nStride, input.descriptor.cStride,
          input.descriptor.hStride, input.descriptor.wStride);
      CudaSystem.handle(gpu.cudnnTransformTensor(precision.getPointer(1.0), tileDescriptor.getPtr(),
          inputTensorMemory.getPtr().withByteOffset(splitY * input.descriptor.hStride * precision.size),
          precision.getPointer(0.0), tileDescriptor.getPtr(),
          outputBuffer.getPtr().withByteOffset(splitX2 * input.descriptor.wStride * precision.size)));
      tileDescriptor.freeRef();
    }
    {
      final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(precision, length,
          input.descriptor.channels, splitY, splitX2, input.descriptor.nStride, input.descriptor.cStride,
          input.descriptor.hStride, input.descriptor.wStride);
      CudaSystem.handle(gpu.cudnnTransformTensor(precision.getPointer(1.0), tileDescriptor.getPtr(),
          inputTensorMemory.getPtr().withByteOffset(splitX * input.descriptor.wStride * precision.size),
          precision.getPointer(0.0), tileDescriptor.getPtr(),
          outputBuffer.getPtr().withByteOffset(splitY2 * input.descriptor.hStride * precision.size)));
      tileDescriptor.freeRef();
    }
    final CudaDevice.CudaTensorDescriptor tileDescriptor = gpu.newTensorDescriptor(precision, length,
        input.descriptor.channels, splitY2, splitX2, input.descriptor.nStride, input.descriptor.cStride,
        input.descriptor.hStride, input.descriptor.wStride);
    CudaSystem.handle(gpu.cudnnTransformTensor(precision.getPointer(1.0), tileDescriptor.getPtr(),
        inputTensorMemory.getPtr()
            .withByteOffset((splitY * input.descriptor.hStride + splitX * input.descriptor.wStride) * precision.size),
        precision.getPointer(0.0), tileDescriptor.getPtr(), outputBuffer.getPtr().withByteOffset(0 * precision.size)));
    gpu.freeRef();
    tileDescriptor.freeRef();
    inputTensorMemory.dirty();
    outputBuffer.dirty();
    inputTensorMemory.freeRef();
    input.freeRef();
    return new CudaTensor(outputBuffer, imageDescriptor, precision);
  }

  @Nonnull
  public static int[] getViewDimensions(int[] sourceDimensions, int[] destinationDimensions) {
    @Nonnull final int[] viewDim = new int[3];
    RefArrays.parallelSetAll(viewDim, i -> Math.min(sourceDimensions[i], destinationDimensions[i]));
    return viewDim;
  }

  @Nullable
  @Override
  public Result eval(@Nonnull final Result... inObj) {
    if (!CudaSystem.isEnabled()) {
      Layer compatibilityLayer = getCompatibilityLayer();
      Result result = compatibilityLayer.eval(inObj);
      compatibilityLayer.freeRef();
      return result;
    }
    assert 1 == inObj.length;
    final Result input = inObj[0].addRef();
    final TensorList inputData = input.getData();
    assert 3 == inputData.getDimensions().length;
    final int length = inputData.length();
    @Nonnull
    int[] dimIn = inputData.getDimensions();
    int splitX1 = (int) (dimIn[0] * getxPos());
    int splitX2 = dimIn[0] - splitX1;
    int splitY1 = (int) (dimIn[1] * getyPos());
    int splitY2 = dimIn[1] - splitY1;
    final TensorList outputData = fwd(inputData, length, dimIn, splitX1, splitY1);
    Result.Accumulator accumulator = new Accumulator(outputData.addRef(), length, splitX2, splitY2, dimIn, ImgTileCycleLayer.this.precision, input.getAccumulator(), input.isAlive());
    input.freeRef();
    boolean isAlive = Result.anyAlive(inObj);
    return new Result(outputData, accumulator, isAlive);
  }

  @Nonnull
  @Override
  public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
    @Nonnull final JsonObject json = super.getJsonStub();
    json.addProperty("precision", precision.name());
    return json;
  }

  @Nonnull
  @Override
  public RefList state() {
    return RefArrays.asList();
  }

  public @SuppressWarnings("unused")
  void _free() {
    super._free();
  }

  @Nonnull
  public @Override
  @SuppressWarnings("unused")
  ImgTileCycleLayer addRef() {
    return (ImgTileCycleLayer) super.addRef();
  }

  @NotNull
  private TensorList fwd(TensorList inputData, int length, int[] dimIn, int splitX1, int splitY1) {
    return CudaSystem.run(RefUtil.wrapInterface((RefFunction) gpu -> {
      @Nullable final CudaTensor inputTensor = gpu.getTensor(inputData.addRef(), precision, MemoryType.Device, false);
      return new CudaTensorList(
          copy(gpu, inputTensor, length, precision, splitX1, splitY1),
          length, dimIn, precision);
    }, inputData.addRef()), inputData);
  }

  private static class Accumulator extends Result.Accumulator {

    private final TensorList outputData;
    private final int length;
    private final int splitX2;
    private final int splitY2;
    private final int[] dimIn;
    private Precision precision;
    private Result.Accumulator accumulator;
    private boolean alive;

    public Accumulator(TensorList outputData, int length, int splitX2, int splitY2, int[] dimIn, Precision precision, Result.Accumulator accumulator, boolean alive) {
      this.outputData = outputData;
      this.length = length;
      this.splitX2 = splitX2;
      this.splitY2 = splitY2;
      this.dimIn = dimIn;
      this.precision = precision;
      this.accumulator = accumulator;
      this.alive = alive;
    }

    @Override
    public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
      if (!RefArrays.equals(delta.getDimensions(), outputData.getDimensions())) {
        if (null != buffer)
          buffer.freeRef();
        AssertionError temp_49_0009 = new AssertionError(RefArrays.toString(delta.getDimensions()) + " != "
            + RefArrays.toString(outputData.getDimensions()));
        delta.freeRef();
        throw temp_49_0009;
      }
      if (delta.length() != outputData.length()) {
        if (null != buffer)
          buffer.freeRef();
        AssertionError temp_49_0010 = new AssertionError(delta.length() + " != " + outputData.length());
        delta.freeRef();
        throw temp_49_0010;
      }
      assert delta.length() == length;
      if (alive) {
        final TensorList passbackTensorList = CudaSystem
            .run(RefUtil.wrapInterface((RefFunction) gpu -> {
              return new CudaTensorList(
                  copy(gpu,
                      gpu.getTensor(delta.addRef(), precision, MemoryType.Device, false),
                      length, precision, splitX2, splitY2),
                  length, dimIn, precision);
            }, delta.addRef()), delta.addRef());
        DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
        this.accumulator.accept(buffer1, passbackTensorList);
      }
      delta.freeRef();
      if (null != buffer)
        buffer.freeRef();
    }

    public @SuppressWarnings("unused")
    void _free() {
      super._free();
      outputData.freeRef();
      accumulator.freeRef();
    }
  }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy