com.simiacryptus.mindseye.layers.cudnn.StochasticSamplingSubnetLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.DataSerializer;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Result;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.lang.cudnn.CudaSettings;
import com.simiacryptus.mindseye.lang.cudnn.MultiPrecision;
import com.simiacryptus.mindseye.lang.cudnn.Precision;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.mindseye.layers.ValueLayer;
import com.simiacryptus.mindseye.layers.WrapperLayer;
import com.simiacryptus.mindseye.network.CountingResult;
import com.simiacryptus.mindseye.network.DAGNetwork;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefSystem;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.Random;
import java.util.function.LongFunction;
@SuppressWarnings("serial")
public class StochasticSamplingSubnetLayer extends WrapperLayer
implements StochasticComponent, MultiPrecision {
private final int samples;
private Precision precision = CudaSettings.INSTANCE().getDefaultPrecision();
private long seed = RefSystem.nanoTime();
private long layerSeed = RefSystem.nanoTime();
public StochasticSamplingSubnetLayer(final Layer subnetwork, final int samples) {
super(subnetwork);
this.samples = samples;
}
protected StochasticSamplingSubnetLayer(@Nonnull final JsonObject json, Map rs) {
super(json, rs);
samples = json.getAsJsonPrimitive("samples").getAsInt();
seed = json.getAsJsonPrimitive("seed").getAsInt();
layerSeed = json.getAsJsonPrimitive("layerSeed").getAsInt();
this.precision = Precision.valueOf(json.getAsJsonPrimitive("precision").getAsString());
}
@Override
public Precision getPrecision() {
return precision;
}
@Override
public void setPrecision(Precision precision) {
this.precision = precision;
}
public long[] getSeeds() {
Random random = new Random(seed + layerSeed);
return RefIntStream.range(0, this.samples).mapToLong(i -> random.nextLong()).toArray();
}
@Nonnull
@SuppressWarnings("unused")
public static StochasticSamplingSubnetLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new StochasticSamplingSubnetLayer(json, rs);
}
@Nullable
public static Result average(@Nonnull final Result[] samples, final Precision precision) {
PipelineNetwork gateNetwork = new PipelineNetwork(1);
ProductLayer productLayer = new ProductLayer();
Tensor tensor = new Tensor(1, 1, 1);
productLayer.setPrecision(precision);
RefUtil.freeRef(gateNetwork.add(productLayer, gateNetwork.getInput(0),
gateNetwork.add(
new ValueLayer(tensor.map(RefUtil.wrapInterface(v -> 1.0 / samples.length, RefUtil.addRef(samples)))),
new DAGNode[]{})));
tensor.freeRef();
SumInputsLayer sumInputsLayer = new SumInputsLayer();
sumInputsLayer.setPrecision(precision);
Result result = gateNetwork.eval(sumInputsLayer.eval(samples));
sumInputsLayer.freeRef();
gateNetwork.freeRef();
return result;
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
if (seed == 0) {
assert inner != null;
return inner.eval(inObj);
}
Result[] counting = RefArrays.stream(inObj).map(r -> {
return new CountingResult(r, samples, StochasticSamplingSubnetLayer.this.addRef());
}).toArray(i -> new Result[i]);
return average(
RefArrays.stream(getSeeds()).mapToObj(RefUtil.wrapInterface((LongFunction extends Result>) seed -> {
if (inner instanceof DAGNetwork) {
((DAGNetwork) inner).visitNodes(node -> {
Layer layer = node.getLayer();
node.freeRef();
if (layer instanceof StochasticComponent) {
((StochasticComponent) layer).shuffle(seed);
}
if (layer instanceof MultiPrecision) {
((MultiPrecision) layer).setPrecision(precision);
}
if (null != layer)
layer.freeRef();
});
}
if (inner instanceof MultiPrecision) {
((MultiPrecision) inner).setPrecision(precision);
}
if (inner instanceof StochasticComponent) {
((StochasticComponent) inner).shuffle(seed);
}
assert inner != null;
inner.setFrozen(isFrozen());
return inner.eval(RefUtil.addRef(counting));
}, counting)).toArray(i -> new Result[i]), precision);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJson(resources, dataSerializer);
json.addProperty("samples", samples);
json.addProperty("seed", seed);
json.addProperty("layerSeed", layerSeed);
json.addProperty("precision", precision.name());
return json;
}
@Override
public void shuffle(final long seed) {
this.seed = seed;
}
@Override
public void clearNoise() {
seed = 0;
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
StochasticSamplingSubnetLayer addRef() {
return (StochasticSamplingSubnetLayer) super.addRef();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy