com.simiacryptus.mindseye.layers.cudnn.SumReducerLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.cudnn;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.lang.cudnn.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefFunction;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import jcuda.jcudnn.*;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
@SuppressWarnings("serial")
public class SumReducerLayer extends LayerBase implements MultiPrecision {
private Precision precision = CudaSettings.INSTANCE().getDefaultPrecision();
public SumReducerLayer() {
super();
}
protected SumReducerLayer(@Nonnull final JsonObject json) {
super(json);
precision = Precision.valueOf(json.get("precision").getAsString());
}
@Nonnull
public Layer getCompatibilityLayer() {
throw new RuntimeException("Not Implemented");
}
@Override
public Precision getPrecision() {
return precision;
}
@Override
public void setPrecision(final Precision precision) {
this.precision = precision;
}
@Nonnull
@SuppressWarnings("unused")
public static SumReducerLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new SumReducerLayer(json);
}
@Nullable
@Override
public Result eval(@Nullable final Result... inObj) {
if (!CudaSystem.isEnabled()) {
Layer compatibilityLayer = getCompatibilityLayer();
Result result = compatibilityLayer.eval(inObj);
compatibilityLayer.freeRef();
return result;
}
assert inObj != null;
final Result input = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList inputData = input.getData();
@Nonnull final int[] inputSize = inputData.getDimensions();
int length = inputData.length();
CudaTensorList result = fwd(inputData, length);
Accumulator accumulator = new Accumulator(length, inputSize, input.getAccumulator());
input.freeRef();
return new Result(result, accumulator);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("precision", precision.name());
return json;
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
SumReducerLayer addRef() {
return (SumReducerLayer) super.addRef();
}
@NotNull
private CudaTensorList fwd(TensorList inputData, int length) {
return CudaSystem.run(RefUtil.wrapInterface((RefFunction) gpu -> {
CudaTensor inputTensor = gpu.getTensor(inputData.addRef(), precision, MemoryType.Device, false);
CudaMemory inputMemory = inputTensor.getMemory(gpu.addRef());
final CudaDevice.CudaTensorDescriptor outputDescriptor = gpu.newTensorDescriptor(precision, length, 1, 1, 1);
long size = (long) precision.size * outputDescriptor.nStride * length;
@Nonnull final CudaMemory outputMemory = gpu.allocate(size, MemoryType.Managed.ifEnabled(), true);
CudaResource reduceTensorDescriptor = gpu.cudnnCreateReduceTensorDescriptor(
cudnnReduceTensorOp.CUDNN_REDUCE_TENSOR_ADD, precision.code, cudnnNanPropagation.CUDNN_NOT_PROPAGATE_NAN,
cudnnReduceTensorIndices.CUDNN_REDUCE_TENSOR_NO_INDICES, cudnnIndicesType.CUDNN_32BIT_INDICES);
assert inputMemory != null;
@Nonnull final CudaMemory workspacePtr = gpu.allocate(inputMemory.size, MemoryType.Device, true);
@Nonnull final CudaMemory indexPtr = gpu.allocate(12 * length, MemoryType.Device, false);
//outputPtr.synchronize();
gpu.cudnnReduceTensor(reduceTensorDescriptor.getPtr(), indexPtr.getPtr(), indexPtr.size, workspacePtr.getPtr(),
workspacePtr.size, precision.getPointer(1.0), inputTensor.descriptor.getPtr(), inputMemory.getPtr(),
precision.getPointer(0.0), outputDescriptor.getPtr(), outputMemory.getPtr());
gpu.freeRef();
indexPtr.freeRef();
reduceTensorDescriptor.freeRef();
inputTensor.freeRef();
inputMemory.dirty();
inputMemory.freeRef();
outputMemory.dirty();
workspacePtr.dirty();
workspacePtr.freeRef();
return new CudaTensorList(new CudaTensor(outputMemory,
outputDescriptor, precision), length, new int[]{1, 1, 1}, precision);
}, inputData));
}
private static class Accumulator extends Result.Accumulator {
private final int length;
private final int[] inputSize;
private Result.Accumulator accumulator;
public Accumulator(int length, int[] inputSize, Result.Accumulator accumulator) {
this.length = length;
this.inputSize = inputSize;
this.accumulator = accumulator;
}
@Override
public void accept(@Nullable DeltaSet ctx, @Nonnull TensorList delta) {
this.accumulator.accept(ctx, new TensorArray(
RefIntStream.range(0, length).mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) i -> {
Tensor d = delta.get(i);
Tensor tensor = new Tensor(inputSize);
tensor.setAll(d.get(0));
d.freeRef();
return tensor;
}, delta)).toArray(i -> new Tensor[i])));
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy