com.simiacryptus.mindseye.layers.java.BinaryNoiseLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.util.FastRandom;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import java.util.*;
/**
* The type Binary noise key.
*/
@SuppressWarnings("serial")
public class BinaryNoiseLayer extends LayerBase implements StochasticComponent {
/**
* The constant randomize.
*/
public static final ThreadLocal random = new ThreadLocal() {
@Override
protected Random initialValue() {
return new Random();
}
};
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(BinaryNoiseLayer.class);
/**
* The Mask list.
*/
@Nonnull
List maskList = new ArrayList<>();
private double value;
private boolean enabled = true;
/**
* Instantiates a new Binary noise key.
*/
public BinaryNoiseLayer() {
this(0.5);
}
/**
* Instantiates a new Binary noise key.
*
* @param value the value
*/
public BinaryNoiseLayer(final double value) {
super();
setValue(value);
}
/**
* Instantiates a new Binary noise key.
*
* @param json the json
*/
protected BinaryNoiseLayer(@Nonnull final JsonObject json) {
super(json);
value = json.get("value").getAsDouble();
JsonElement enabled = json.get("enabled");
this.enabled = enabled == null || enabled.getAsBoolean();
}
/**
* From json binary noise key.
*
* @param json the json
* @param rs the rs
* @return the binary noise key
*/
public static BinaryNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new BinaryNoiseLayer(json);
}
@Override
public Result eval(@Nonnull final Result... inObj) {
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
final Result input = inObj[0];
if (!enabled) return input;
@Nonnull final int[] dimensions = input.getData().getDimensions();
if (maskList.size() > 1 && !Arrays.equals(maskList.get(0).getDimensions(), dimensions)) {
maskList.clear();
}
final int length = input.getData().length();
@Nonnull final Tensor tensorPrototype = new Tensor(dimensions);
while (length > maskList.size()) {
maskList.add(tensorPrototype.map(v -> FastRandom.INSTANCE.random() < getValue() ? 0 : (1.0 / getValue())));
}
@Nonnull final TensorList mask = TensorArray.create(maskList.stream().limit(length).toArray(i -> new Tensor[i]));
return new Result(mask, (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
data.addRef();
input.accumulate(buffer, data);
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
}
@Override
public boolean isAlive() {
return input.isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("value", value);
json.addProperty("enabled", enabled);
return json;
}
/**
* Gets value.
*
* @return the value
*/
public double getValue() {
return value;
}
/**
* Sets value.
*
* @param value the value
* @return the value
*/
@Nonnull
public BinaryNoiseLayer setValue(final double value) {
this.value = value;
shuffle(StochasticComponent.random.get().nextLong());
return this;
}
@Override
public void shuffle(final long seed) {
maskList.clear();
}
@Override
public void clearNoise() {
maskList.clear();
this.enabled = false;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}