com.simiacryptus.mindseye.layers.java.DropoutNoiseLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.*;
import java.util.stream.IntStream;
/**
* Randomly selects a fraction of the inputs and sets all other elements to zero.
*/
@SuppressWarnings("serial")
public class DropoutNoiseLayer extends LayerBase implements StochasticComponent {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(DropoutNoiseLayer.class);
/**
* The Seed.
*/
long seed = StochasticComponent.random.get().nextLong();
private double value;
/**
* Instantiates a new Dropout noise key.
*/
public DropoutNoiseLayer() {
this(0.5);
}
/**
* Instantiates a new Dropout noise key.
*
* @param value the value
*/
public DropoutNoiseLayer(final double value) {
super();
setValue(value);
}
/**
* Instantiates a new Dropout noise key.
*
* @param json the json
*/
protected DropoutNoiseLayer(@Nonnull final JsonObject json) {
super(json);
value = json.get("value").getAsDouble();
}
/**
* From json dropout noise key.
*
* @param json the json
* @param rs the rs
* @return the dropout noise key
*/
public static DropoutNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new DropoutNoiseLayer(json);
}
@Nonnull
@Override
public Result eval(final Result... inObj) {
final Result inputResult = inObj[0];
inputResult.addRef();
final TensorList inputData = inputResult.getData();
final int itemCnt = inputData.length();
final Tensor[] mask = IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
@Nonnull final Random random = new Random(seed);
@Nullable final Tensor input = inputData.get(dataIndex);
@Nullable final Tensor output = input.map(x -> {
if (seed == -1) return 1;
return random.nextDouble() < getValue() ? 0 : (1.0 / getValue());
});
input.freeRef();
return output;
}).toArray(i -> new Tensor[i]);
return new Result(TensorArray.wrap(IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
Tensor inputTensor = inputData.get(dataIndex);
@Nullable final double[] input = inputTensor.getData();
@Nullable final double[] maskT = mask[dataIndex].getData();
@Nonnull final Tensor output = new Tensor(inputTensor.getDimensions());
@Nullable final double[] outputData = output.getData();
for (int i = 0; i < outputData.length; i++) {
outputData[i] = input[i] * maskT[i];
}
inputTensor.freeRef();
return output;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (inputResult.isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, delta.length()).mapToObj(dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nullable final double[] deltaData = deltaTensor.getData();
@Nullable final double[] maskData = mask[dataIndex].getData();
@Nonnull final Tensor passback = new Tensor(deltaTensor.getDimensions());
for (int i = 0; i < passback.length(); i++) {
passback.set(i, maskData[i] * deltaData[i]);
}
deltaTensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
inputResult.accumulate(buffer, tensorArray);
}
}) {
@Override
protected void _free() {
inputResult.freeRef();
Arrays.stream(mask).forEach(ReferenceCounting::freeRef);
}
@Override
public boolean isAlive() {
return inputResult.isAlive() || !isFrozen();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("value", value);
return json;
}
/**
* Gets value.
*
* @return the value
*/
public double getValue() {
return value;
}
/**
* Sets value.
*
* @param value the value
* @return the value
*/
@Nonnull
public DropoutNoiseLayer setValue(final double value) {
this.value = value;
return this;
}
@Override
public void shuffle(final long seed) {
this.seed = StochasticComponent.random.get().nextLong();
}
@Override
public void clearNoise() {
seed = -1;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}