com.simiacryptus.mindseye.layers.java.FullyConnectedReferenceLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.util.FastRandom;
import com.simiacryptus.util.JsonUtil;
import com.simiacryptus.util.Util;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.function.DoubleSupplier;
import java.util.function.IntToDoubleFunction;
import java.util.function.ToDoubleBiFunction;
import java.util.function.ToDoubleFunction;
import java.util.stream.IntStream;
/**
* A dense matrix operator using vector-matrix multiplication. Represents a fully connected key of synapses, where all
* inputs are connected to all outputs via seperate coefficients.
*/
@SuppressWarnings("serial")
public class FullyConnectedReferenceLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(FullyConnectedReferenceLayer.class);
/**
* The Input dims.
*/
@Nullable
public final int[] inputDims;
/**
* The Output dims.
*/
@Nullable
public final int[] outputDims;
/**
* The Weights.
*/
@Nullable
public final Tensor weights;
/**
* Instantiates a new Fully connected key.
*/
protected FullyConnectedReferenceLayer() {
super();
outputDims = null;
weights = null;
inputDims = null;
}
/**
* Instantiates a new Fully connected key.
*
* @param inputDims the input dims
* @param outputDims the output dims
*/
public FullyConnectedReferenceLayer(@Nonnull final int[] inputDims, @Nonnull final int[] outputDims) {
this.inputDims = Arrays.copyOf(inputDims, inputDims.length);
this.outputDims = Arrays.copyOf(outputDims, outputDims.length);
final int inputs = Tensor.length(inputDims);
final int outputs = Tensor.length(outputDims);
weights = new Tensor(inputs, outputs);
set(() -> {
final double ratio = Math.sqrt(6. / (inputs + outputs + 1));
final double fate = Util.R.get().nextDouble();
final double v = (1 - 2 * fate) * ratio;
return v;
});
}
/**
* Instantiates a new Fully connected key.
*
* @param json the json
* @param resources the resources
*/
protected FullyConnectedReferenceLayer(@Nonnull final JsonObject json, Map resources) {
super(json);
outputDims = JsonUtil.getIntArray(json.getAsJsonArray("outputDims"));
inputDims = JsonUtil.getIntArray(json.getAsJsonArray("inputDims"));
weights = Tensor.fromJson(json.get("weights"), resources);
}
/**
* From json fully connected key.
*
* @param json the json
* @param rs the rs
* @return the fully connected key
*/
public static FullyConnectedReferenceLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new FullyConnectedReferenceLayer(json, rs);
}
@Override
protected void _free() {
weights.freeRef();
super._free();
}
@Nonnull
@Override
public Result eval(final Result... inObj) {
final Result inputResult = inObj[0];
final TensorList indata = inputResult.getData();
inputResult.addRef();
indata.addRef();
@Nonnull int[] inputDimensions = indata.getDimensions();
assert Tensor.length(inputDimensions) == Tensor.length(this.inputDims) : Arrays.toString(inputDimensions) + " == " + Arrays.toString(this.inputDims);
weights.addRef();
return new Result(TensorArray.wrap(IntStream.range(0, indata.length()).mapToObj(index -> {
@Nullable final Tensor input = indata.get(index);
@Nullable final Tensor output = new Tensor(outputDims);
weights.coordStream(false).forEach(c -> {
int[] coords = c.getCoords();
double prev = output.get(coords[1]);
double w = weights.get(c);
double i = input.get(coords[0]);
double value = prev + w * i;
output.set(coords[1], value);
});
input.freeRef();
return output;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (!isFrozen()) {
final Delta deltaBuffer = buffer.get(FullyConnectedReferenceLayer.this.getId(), getWeights().getData());
Tensor[] array = IntStream.range(0, indata.length()).mapToObj(i -> {
@Nullable final Tensor inputTensor = indata.get(i);
@Nullable final Tensor deltaTensor = delta.get(i);
@Nonnull Tensor weights = new Tensor(FullyConnectedReferenceLayer.this.weights.getDimensions());
weights.coordStream(false).forEach(c -> {
int[] coords = c.getCoords();
weights.set(c, inputTensor.get(coords[0]) * deltaTensor.get(coords[1]));
});
inputTensor.freeRef();
deltaTensor.freeRef();
return weights;
}).toArray(i -> new Tensor[i]);
Tensor tensor = Arrays.stream(array).reduce((a, b) -> {
Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get();
deltaBuffer.addInPlace(tensor.getData()).freeRef();
tensor.freeRef();
}
if (inputResult.isAlive()) {
@Nonnull final TensorList tensorList = TensorArray.wrap(IntStream.range(0, indata.length()).mapToObj(i -> {
@Nullable final Tensor inputTensor = new Tensor(inputDims);
@Nullable final Tensor deltaTensor = delta.get(i);
weights.coordStream(false).forEach(c -> {
int[] coords = c.getCoords();
inputTensor.set(coords[0], inputTensor.get(coords[0]) + weights.get(c) * deltaTensor.get(coords[1]));
});
deltaTensor.freeRef();
return inputTensor;
}).toArray(i -> new Tensor[i]));
inputResult.accumulate(buffer, tensorList);
}
}) {
@Override
protected void _free() {
indata.freeRef();
inputResult.freeRef();
weights.freeRef();
}
@Override
public boolean isAlive() {
return inputResult.isAlive() || !isFrozen();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, @Nonnull DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.add("outputDims", JsonUtil.getJson(outputDims));
json.add("inputDims", JsonUtil.getJson(inputDims));
json.add("weights", weights.toJson(resources, dataSerializer));
return json;
}
/**
* Gets weights.
*
* @return the weights
*/
@Nullable
public Tensor getWeights() {
return weights;
}
/**
* Sets weights.
*
* @param f the f
* @return the weights
*/
@Nonnull
public FullyConnectedReferenceLayer set(@Nonnull final DoubleSupplier f) {
Arrays.parallelSetAll(weights.getData(), i -> f.getAsDouble());
return this;
}
/**
* Sets weights.
*
* @param f the f
* @return the weights
*/
@Nonnull
public FullyConnectedReferenceLayer set(@Nonnull final IntToDoubleFunction f) {
weights.set(f);
return this;
}
/**
* Sets weights.
*
* @param f the f
* @return the weights
*/
@Nonnull
public FullyConnectedReferenceLayer setByCoord(@Nonnull final ToDoubleFunction f) {
weights.coordStream(true).forEach(c -> {
weights.set(c, f.applyAsDouble(c));
});
return this;
}
/**
* Sets weights.
*
* @param data the data
* @return the weights
*/
@Nonnull
public FullyConnectedReferenceLayer set(final double[] data) {
weights.set(data);
return this;
}
/**
* Set fully connected key.
*
* @param data the data
* @return the fully connected key
*/
@Nonnull
public FullyConnectedReferenceLayer set(@Nonnull final Tensor data) {
weights.set(data);
return this;
}
/**
* Sets weights.
*
* @param f the f
* @return the weights
*/
@Nonnull
public FullyConnectedReferenceLayer setByCoord(@Nonnull final ToDoubleBiFunction f) {
new Tensor(inputDims).coordStream(true).forEach(in -> {
new Tensor(outputDims).coordStream(true).forEach(out -> {
weights.set(new int[]{in.getIndex(), out.getIndex()}, f.applyAsDouble(in, out));
});
});
return this;
}
/**
* Sets weights log.
*
* @param value the value
* @return the weights log
*/
@Nonnull
public FullyConnectedReferenceLayer setWeightsLog(final double value) {
weights.coordStream(false).forEach(c -> {
weights.set(c, (FastRandom.INSTANCE.random() - 0.5) * Math.pow(10, value));
});
return this;
}
@Nonnull
@Override
public List state() {
return Arrays.asList(getWeights().getData());
}
}