com.simiacryptus.mindseye.layers.java.MaxDropoutNoiseLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.util.JsonUtil;
import com.simiacryptus.util.Util;
import com.simiacryptus.util.data.IntArray;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.*;
import java.util.function.Function;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
/**
* Selects the maximum value in each NxN cell, setting all other values to zero. This introduces sparsity into the
* signal, but does not sumChannels resolution.
*/
@SuppressWarnings("serial")
public class MaxDropoutNoiseLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(MaxDropoutNoiseLayer.class);
@Nullable
private final int[] kernelSize;
private final Function>> getCellMap_cached = Util.cache(this::getCellMap);
/**
* Instantiates a new Max dropout noise key.
*/
public MaxDropoutNoiseLayer() {
this(2, 2);
}
/**
* Instantiates a new Max dropout noise key.
*
* @param dims the dims
*/
public MaxDropoutNoiseLayer(final int... dims) {
super();
kernelSize = dims;
}
/**
* Instantiates a new Max dropout noise key.
*
* @param json the json
*/
protected MaxDropoutNoiseLayer(@Nonnull final JsonObject json) {
super(json);
kernelSize = JsonUtil.getIntArray(json.getAsJsonArray("kernelSize"));
}
/**
* From json max dropout noise key.
*
* @param json the json
* @param rs the rs
* @return the max dropout noise key
*/
public static MaxDropoutNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new MaxDropoutNoiseLayer(json);
}
@Nonnull
@Override
public Result eval(final Result... inObj) {
final Result in0 = inObj[0];
final TensorList data0 = in0.getData();
final int itemCnt = data0.length();
in0.addRef();
data0.addRef();
final Tensor[] mask = IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
@Nullable final Tensor input = data0.get(dataIndex);
@Nullable final Tensor output = input.map(x -> 0);
final List> cells = getCellMap_cached.apply(new IntArray(output.getDimensions()));
cells.forEach(cell -> {
output.set(cell.stream().max(Comparator.comparingDouble(c -> input.get(c))).get(), 1);
});
input.freeRef();
return output;
}).toArray(i -> new Tensor[i]);
return new Result(TensorArray.wrap(IntStream.range(0, itemCnt).mapToObj(dataIndex -> {
Tensor inputData = data0.get(dataIndex);
@Nullable final double[] input = inputData.getData();
@Nullable final double[] maskT = mask[dataIndex].getData();
@Nonnull final Tensor output = new Tensor(inputData.getDimensions());
@Nullable final double[] outputData = output.getData();
for (int i = 0; i < outputData.length; i++) {
outputData[i] = input[i] * maskT[i];
}
inputData.freeRef();
return output;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
if (in0.isAlive()) {
@Nonnull TensorArray tensorArray = TensorArray.wrap(IntStream.range(0, delta.length()).mapToObj(dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nullable final double[] deltaData = deltaTensor.getData();
@Nonnull final int[] dims = data0.getDimensions();
@Nullable final double[] maskData = mask[dataIndex].getData();
@Nonnull final Tensor passback = new Tensor(dims);
for (int i = 0; i < passback.length(); i++) {
passback.set(i, maskData[i] * deltaData[i]);
}
deltaTensor.freeRef();
return passback;
}).toArray(i -> new Tensor[i]));
in0.accumulate(buffer, tensorArray);
}
}) {
@Override
protected void _free() {
in0.freeRef();
data0.freeRef();
Arrays.stream(mask).forEach(ReferenceCounting::freeRef);
}
@Override
public boolean isAlive() {
return in0.isAlive() || !isFrozen();
}
};
}
private List> getCellMap(@Nonnull final IntArray dims) {
Tensor tensor = new Tensor(dims.data);
ArrayList> lists = new ArrayList<>(tensor.coordStream(true).collect(Collectors.groupingBy((@Nonnull final Coordinate c) -> {
int cellId = 0;
int max = 0;
for (int dim = 0; dim < dims.size(); dim++) {
final int pos = c.getCoords()[dim] / kernelSize[dim];
cellId = cellId * max + pos;
max = dims.get(dim) / kernelSize[dim];
}
return cellId;
})).values());
tensor.freeRef();
return lists;
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.add("kernelSize", JsonUtil.getJson(kernelSize));
return json;
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}