com.simiacryptus.mindseye.layers.java.StochasticSamplingSubnetLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.mindseye.layers.ValueLayer;
import com.simiacryptus.mindseye.network.CountingResult;
import com.simiacryptus.mindseye.network.DAGNetwork;
import com.simiacryptus.mindseye.network.DAGNode;
import com.simiacryptus.mindseye.network.PipelineNetwork;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.*;
import java.util.stream.IntStream;
/**
* This key works as a scaling function, similar to a father wavelet. Allows convolutional and pooling layers to work
* across larger png regions.
*/
@SuppressWarnings("serial")
public class StochasticSamplingSubnetLayer extends LayerBase implements StochasticComponent {
private final int samples;
@Nullable
private final Layer subnetwork;
private long seed = System.nanoTime();
private long layerSeed = System.nanoTime();
/**
* Instantiates a new Rescaled subnet key.
*
* @param subnetwork the subnetwork
* @param samples the samples
*/
public StochasticSamplingSubnetLayer(final Layer subnetwork, final int samples) {
super();
this.samples = samples;
this.subnetwork = subnetwork;
this.subnetwork.addRef();
}
/**
* Instantiates a new Rescaled subnet key.
*
* @param json the json
* @param rs the rs
*/
protected StochasticSamplingSubnetLayer(@Nonnull final JsonObject json, Map rs) {
super(json);
samples = json.getAsJsonPrimitive("samples").getAsInt();
seed = json.getAsJsonPrimitive("seed").getAsInt();
layerSeed = json.getAsJsonPrimitive("layerSeed").getAsInt();
JsonObject subnetwork = json.getAsJsonObject("subnetwork");
this.subnetwork = subnetwork == null ? null : Layer.fromJson(subnetwork, rs);
}
/**
* From json rescaled subnet key.
*
* @param json the json
* @param rs the rs
* @return the rescaled subnet key
*/
public static StochasticSamplingSubnetLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new StochasticSamplingSubnetLayer(json, rs);
}
/**
* Average result.
*
* @param samples the samples
* @return the result
*/
public static Result average(final Result[] samples) {
PipelineNetwork gateNetwork = new PipelineNetwork(1);
gateNetwork.wrap(new ProductLayer(),
gateNetwork.getInput(0),
gateNetwork.wrap(new ValueLayer(new Tensor(1, 1, 1).mapAndFree(v -> 1.0 / samples.length)), new DAGNode[]{})).freeRef();
SumInputsLayer sumInputsLayer = new SumInputsLayer();
try {
return gateNetwork.evalAndFree(sumInputsLayer.evalAndFree(samples));
} finally {
sumInputsLayer.freeRef();
gateNetwork.freeRef();
}
}
@Override
protected void _free() {
this.subnetwork.freeRef();
super._free();
}
@Nullable
@Override
public Result eval(@Nonnull final Result... inObj) {
Result[] counting = Arrays.stream(inObj).map(r -> {
return new CountingResult(r, samples);
}).toArray(i -> new Result[i]);
return average(Arrays.stream(getSeeds()).mapToObj(seed -> {
if (subnetwork instanceof DAGNetwork) {
((DAGNetwork) subnetwork).visitNodes(node -> {
Layer layer = node.getLayer();
if (layer instanceof StochasticComponent) {
((StochasticComponent) layer).shuffle(seed);
}
});
}
if (subnetwork instanceof StochasticComponent) {
((StochasticComponent) subnetwork).shuffle(seed);
}
return subnetwork.eval(counting);
}).toArray(i -> new Result[i]));
}
/**
* Get seeds long [ ].
*
* @return the long [ ]
*/
public long[] getSeeds() {
Random random = new Random(seed + layerSeed);
return IntStream.range(0, this.samples).mapToLong(i -> random.nextLong()).toArray();
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("samples", samples);
json.addProperty("seed", seed);
json.addProperty("layerSeed", layerSeed);
json.add("subnetwork", subnetwork.getJson(resources, dataSerializer));
return json;
}
@Nonnull
@Override
public List state() {
return new ArrayList<>();
}
@Nonnull
@Override
public Layer setFrozen(final boolean frozen) {
subnetwork.setFrozen(frozen);
return super.setFrozen(frozen);
}
@Override
public void shuffle(final long seed) {
this.seed = seed;
}
@Override
public void clearNoise() {
seed = 0;
}
}