com.simiacryptus.mindseye.layers.java.SumInputsLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.IntStream;
/**
* Sums all inputs together, element-by-element, assuming they all have the same dimension.
*/
@SuppressWarnings("serial")
public class SumInputsLayer extends LayerBase {
/**
* Instantiates a new Sum inputs key.
*/
public SumInputsLayer() {
}
/**
* Instantiates a new Sum inputs key.
*
* @param id the id
*/
protected SumInputsLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json sum inputs key.
*
* @param json the json
* @param rs the rs
* @return the sum inputs key
*/
public static SumInputsLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new SumInputsLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
Arrays.stream(inObj).forEach(nnResult -> nnResult.addRef());
Arrays.stream(inObj).forEach(x -> x.getData().addRef());
return new Result(Arrays.stream(inObj).parallel().map(x -> {
TensorList data = x.getData();
data.addRef();
return data;
}).reduce((l, r) -> {
assert l.length() == r.length() || 1 == l.length() || 1 == r.length();
@Nonnull TensorArray sum = TensorArray.wrap(IntStream.range(0, l.length()).parallel()
.mapToObj(i -> {
@Nullable final Tensor left = l.get(1 == l.length() ? 0 : i);
@Nullable final Tensor right = r.get(1 == r.length() ? 0 : i);
@Nullable Tensor tensor;
if (right.length() == 1) {
tensor = left.mapParallel(v -> v + right.get(0));
} else {
tensor = left.reduceParallel(right, (v1, v2) -> v1 + v2);
}
left.freeRef();
right.freeRef();
return tensor;
})
.toArray(i -> new Tensor[i]));
l.freeRef();
r.freeRef();
return sum;
}).get(), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList delta) -> {
for (@Nonnull final Result input : inObj) {
if (input.isAlive()) {
@Nonnull TensorList projectedDelta = delta;
if (1 < projectedDelta.length() && input.getData().length() == 1) {
projectedDelta = TensorArray.wrap(projectedDelta.stream().parallel().reduce((a, b) -> {
@Nullable Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get());
} else {
projectedDelta.addRef();
}
if (1 < Tensor.length(projectedDelta.getDimensions()) && Tensor.length(input.getData().getDimensions()) == 1) {
Tensor[] data = projectedDelta.stream().map(t -> new Tensor(new double[]{t.sum()})).toArray(i -> new Tensor[i]);
@Nonnull TensorArray data2 = TensorArray.wrap(data);
projectedDelta.freeRef();
projectedDelta = data2;
}
input.accumulate(buffer, projectedDelta);
}
}
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(nnResult -> nnResult.freeRef());
Arrays.stream(inObj).forEach(x -> x.getData().freeRef());
}
@Override
public boolean isAlive() {
for (@Nonnull final Result element : inObj)
if (element.isAlive()) {
return true;
}
return false;
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}