com.simiacryptus.mindseye.layers.java.MeanSqLossLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.lang.ref.ReferenceCounting;
import com.simiacryptus.mindseye.lang.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.UUID;
import java.util.stream.Collectors;
import java.util.stream.IntStream;
import java.util.stream.Stream;
/**
* An RMS-differencing loss function without the final square root.
*/
@SuppressWarnings("serial")
public class MeanSqLossLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(MeanSqLossLayer.class);
/**
* Instantiates a new Mean sq loss key.
*/
public MeanSqLossLayer() {
}
/**
* Instantiates a new Mean sq loss key.
*
* @param id the id
*/
protected MeanSqLossLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json mean sq loss key.
*
* @param json the json
* @param rs the rs
* @return the mean sq loss key
*/
public static MeanSqLossLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new MeanSqLossLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
if (2 != inObj.length) throw new IllegalArgumentException();
final int leftLength = inObj[0].getData().length();
final int rightLength = inObj[1].getData().length();
Arrays.stream(inObj).forEach(ReferenceCounting::addRef);
if (leftLength != rightLength && leftLength != 1 && rightLength != 1) {
throw new IllegalArgumentException(leftLength + " != " + rightLength);
}
@Nonnull final Tensor diffs[] = new Tensor[leftLength];
return new Result(TensorArray.wrap(IntStream.range(0, leftLength).mapToObj(dataIndex -> {
@Nullable final Tensor a = inObj[0].getData().get(1 == leftLength ? 0 : dataIndex);
@Nullable final Tensor b = inObj[1].getData().get(1 == rightLength ? 0 : dataIndex);
if (a.length() != b.length()) {
throw new IllegalArgumentException(String.format("%s != %s", Arrays.toString(a.getDimensions()), Arrays.toString(b.getDimensions())));
}
@Nonnull final Tensor r = a.minus(b);
a.freeRef();
b.freeRef();
diffs[dataIndex] = r;
@Nonnull Tensor statsTensor = new Tensor(new double[]{r.sumSq() / r.length()}, 1);
return statsTensor;
}).toArray(i -> new Tensor[i])), (@Nonnull final DeltaSet buffer, @Nonnull final TensorList data) -> {
if (inObj[0].isAlive()) {
Stream tensorStream = IntStream.range(0, data.length()).parallel().mapToObj(dataIndex -> {
@Nullable Tensor tensor = data.get(dataIndex);
Tensor diff = diffs[dataIndex];
@Nullable Tensor scale = diff.scale(tensor.get(0) * 2.0 / diff.length());
tensor.freeRef();
return scale;
}).collect(Collectors.toList()).stream();
if (1 == leftLength) {
tensorStream = Stream.of(tensorStream.reduce((a, b) -> {
@Nullable Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get());
}
@Nonnull final TensorList array = TensorArray.wrap(tensorStream.toArray(i -> new Tensor[i]));
inObj[0].accumulate(buffer, array);
}
if (inObj[1].isAlive()) {
Stream tensorStream = IntStream.range(0, data.length()).parallel().mapToObj(dataIndex -> {
@Nullable Tensor tensor = data.get(dataIndex);
@Nullable Tensor scale = diffs[dataIndex].scale(tensor.get(0) * 2.0 / diffs[dataIndex].length());
tensor.freeRef();
return scale;
}).collect(Collectors.toList()).stream();
if (1 == rightLength) {
tensorStream = Stream.of(tensorStream.reduce((a, b) -> {
@Nullable Tensor c = a.addAndFree(b);
b.freeRef();
return c;
}).get());
}
@Nonnull final TensorList array = TensorArray.wrap(tensorStream.map(x -> {
@Nullable Tensor scale = x.scale(-1);
x.freeRef();
return scale;
}).toArray(i -> new Tensor[i]));
inObj[1].accumulate(buffer, array);
}
data.freeRef();
}) {
@Override
protected void _free() {
Arrays.stream(inObj).forEach(ReferenceCounting::freeRef);
Arrays.stream(diffs).forEach(ReferenceCounting::freeRef);
}
@Override
public boolean isAlive() {
return inObj[0].isAlive() || inObj[1].isAlive();
}
};
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public List state() {
return Arrays.asList();
}
}