![JAR search and dependency download from the Maven repository](/logo.png)
com.simiacryptus.mindseye.layers.java.CrossProductLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Cross product layer.
*/
@SuppressWarnings("serial")
public class CrossProductLayer extends LayerBase {
/**
* Instantiates a new Cross product layer.
*/
public CrossProductLayer() {
}
/**
* Instantiates a new Cross product layer.
*
* @param id the id
*/
protected CrossProductLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json cross product layer.
*
* @param json the json
* @param rs the rs
* @return the cross product layer
*/
@Nonnull
@SuppressWarnings("unused")
public static CrossProductLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new CrossProductLayer(json);
}
/**
* Index int.
*
* @param x the x
* @param y the y
* @param max the max
* @return the int
*/
public static int index(final int x, final int y, final int max) {
return max * (max - 1) / 2 - (max - x) * (max - x - 1) / 2 + y - x - 1;
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
final Result in = inObj[0].addRef();
TensorList indata = in.getData();
TensorArray data = fwd(indata.addRef());
boolean alive = alive(inObj);
Accumulator accumulator = new Accumulator(indata, in.getAccumulator(), in.isAlive());
in.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
CrossProductLayer addRef() {
return (CrossProductLayer) super.addRef();
}
private boolean alive(Result[] inObj) {
return Result.anyAlive(inObj);
}
@NotNull
private TensorArray fwd(TensorList indata) {
TensorArray tensorArray = new TensorArray(indata.stream().parallel().map(tensor -> {
final int inputDim = tensor.length();
final int outputDim = (inputDim * inputDim - inputDim) / 2;
@Nonnull final Tensor result1 = new Tensor(outputDim);
@Nullable final double[] inputData = tensor.getData();
tensor.freeRef();
@Nullable final double[] resultData = result1.getData();
RefIntStream.range(0, inputDim).forEach(x -> {
RefIntStream.range(x + 1, inputDim).forEach(y -> {
resultData[CrossProductLayer.index(x, y, inputDim)] = inputData[x] * inputData[y];
});
});
return result1;
}).toArray(Tensor[]::new));
indata.freeRef();
return tensorArray;
}
private static class Accumulator extends Result.Accumulator {
private final TensorList indata;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param indata the indata
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(TensorList indata, Result.Accumulator accumulator, boolean alive) {
this.indata = indata;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
assert delta.length() == delta.length();
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) batchIndex -> {
@Nullable final Tensor deltaTensor = delta.get(batchIndex);
final int outputDim = deltaTensor.length();
final int inputDim = (1 + (int) Math.sqrt(1 + 8 * outputDim)) / 2;
@Nonnull final Tensor passback = new Tensor(inputDim);
@Nullable final double[] passbackData = passback.getData();
@Nullable final double[] tensorData = deltaTensor.getData();
deltaTensor.freeRef();
Tensor inputTensor = indata.get(batchIndex);
@Nullable final double[] inputData = inputTensor.getData();
inputTensor.freeRef();
RefIntStream.range(0, inputDim).forEach(x -> {
RefIntStream.range(x + 1, inputDim).forEach(y -> {
passbackData[x] += tensorData[CrossProductLayer.index(x, y, inputDim)] * inputData[y];
passbackData[y] += tensorData[CrossProductLayer.index(x, y, inputDim)] * inputData[x];
});
});
return passback;
}, indata.addRef(), delta.addRef()))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
indata.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy