![JAR search and dependency download from the Maven repository](/logo.png)
com.simiacryptus.mindseye.layers.java.DropoutNoiseLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.Random;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Dropout noise layer.
*/
@SuppressWarnings("serial")
public class DropoutNoiseLayer extends LayerBase implements StochasticComponent {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(DropoutNoiseLayer.class);
/**
* The Seed.
*/
long seed = StochasticComponent.random.get().nextLong();
private double value;
/**
* Instantiates a new Dropout noise layer.
*/
public DropoutNoiseLayer() {
this(0.5);
}
/**
* Instantiates a new Dropout noise layer.
*
* @param value the value
*/
public DropoutNoiseLayer(final double value) {
super();
setValue(value);
}
/**
* Instantiates a new Dropout noise layer.
*
* @param json the json
*/
protected DropoutNoiseLayer(@Nonnull final JsonObject json) {
super(json);
value = json.get("value").getAsDouble();
}
/**
* Gets value.
*
* @return the value
*/
public double getValue() {
return value;
}
/**
* Sets value.
*
* @param value the value
*/
public void setValue(double value) {
this.value = value;
}
/**
* From json dropout noise layer.
*
* @param json the json
* @param rs the rs
* @return the dropout noise layer
*/
@Nonnull
@SuppressWarnings("unused")
public static DropoutNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new DropoutNoiseLayer(json);
}
@Nonnull
@Override
public Result eval(@Nullable final Result... inObj) {
assert inObj != null;
final Result inputResult = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList inputData = inputResult.getData();
final int itemCnt = inputData.length();
final Tensor[] mask = RefIntStream.range(0, itemCnt)
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nonnull final Random random = new Random(seed);
@Nullable final Tensor input = inputData.get(dataIndex);
Tensor temp_36_0003 = input.map(x -> {
if (seed == -1)
return 1;
return random.nextDouble() < getValue() ? 0 : 1.0 / getValue();
});
input.freeRef();
return temp_36_0003;
}, inputData.addRef())).toArray(Tensor[]::new);
boolean alive = inputResult.isAlive();
Result.Accumulator accumulator = new Accumulator(RefUtil.addRef(mask), inputResult.getAccumulator(), inputResult.isAlive());
inputResult.freeRef();
TensorArray data = fwd(inputData, itemCnt, mask);
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("value", value);
return json;
}
@Override
public void shuffle(final long seed) {
//log.info(String.format("Set %s to random seed %s", getName(), seed));
this.seed = StochasticComponent.random.get().nextLong();
}
@Override
public void clearNoise() {
//log.info(String.format("Set %s to random null seed", getName()));
seed = -1;
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
DropoutNoiseLayer addRef() {
return (DropoutNoiseLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList inputData, int itemCnt, Tensor[] mask) {
return new TensorArray(RefIntStream.range(0, itemCnt)
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor inputTensor = inputData.get(dataIndex);
@Nullable final double[] input = inputTensor.getData();
@Nullable final double[] maskT = mask[dataIndex].getData();
@Nonnull final Tensor output = new Tensor(inputTensor.getDimensions());
inputTensor.freeRef();
@Nullable final double[] outputData = output.getData();
for (int i = 0; i < outputData.length; i++) {
outputData[i] = input[i] * maskT[i];
}
return output;
}, mask, inputData)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final Tensor[] mask;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param mask the mask
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(Tensor[] mask, Result.Accumulator accumulator, boolean alive) {
this.mask = mask;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nullable final double[] deltaData = deltaTensor.getData();
@Nullable final double[] maskData = mask[dataIndex].getData();
@Nonnull final Tensor passback = new Tensor(deltaTensor.getDimensions());
deltaTensor.freeRef();
for (int i = 0; i < passback.length(); i++) {
passback.set(i, maskData[i] * deltaData[i]);
}
return passback;
}, RefUtil.addRef(mask), delta.addRef())).toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
RefUtil.freeRef(mask);
accumulator.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy