com.simiacryptus.mindseye.layers.java.GaussianNoiseLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.layers.StochasticComponent;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.Random;
import java.util.UUID;
import java.util.function.IntFunction;
import java.util.function.IntToDoubleFunction;
/**
* The type Gaussian noise layer.
*/
@SuppressWarnings("serial")
public class GaussianNoiseLayer extends LayerBase implements StochasticComponent {
/**
* The constant random.
*/
public static final ThreadLocal random = new ThreadLocal() {
@Nonnull
@Override
protected Random initialValue() {
return new Random();
}
};
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(GaussianNoiseLayer.class);
private long seed = GaussianNoiseLayer.random.get().nextLong();
private double value;
/**
* Instantiates a new Gaussian noise layer.
*/
public GaussianNoiseLayer() {
super();
setValue(1.0);
}
/**
* Instantiates a new Gaussian noise layer.
*
* @param json the json
*/
protected GaussianNoiseLayer(@Nonnull final JsonObject json) {
super(json);
value = json.get("value").getAsDouble();
seed = json.get("seed").getAsLong();
}
/**
* Gets value.
*
* @return the value
*/
public double getValue() {
return value;
}
/**
* Sets value.
*
* @param value the value
*/
public void setValue(double value) {
this.value = value;
}
/**
* From json gaussian noise layer.
*
* @param json the json
* @param rs the rs
* @return the gaussian noise layer
*/
@Nonnull
@SuppressWarnings("unused")
public static GaussianNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new GaussianNoiseLayer(json);
}
@Nonnull
@Override
public Result eval(@Nullable final Result... inObj) {
assert inObj != null;
final Result in0 = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList inputData = in0.getData();
int[] dimensions = inputData.getDimensions();
TensorArray data = fwd(inputData);
boolean alive = in0.isAlive();
Result.Accumulator accumulator = new Accumulator(dimensions, in0.getAccumulator(), in0.isAlive());
in0.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("value", value);
json.addProperty("seed", seed);
return json;
}
/**
* Shuffle.
*/
public void shuffle() {
shuffle(GaussianNoiseLayer.random.get().nextLong());
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
@Override
public void shuffle(long seed) {
this.seed = seed;
}
@Override
public void clearNoise() {
this.seed = 0;
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
GaussianNoiseLayer addRef() {
return (GaussianNoiseLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList inputData) {
final int itemCnt = inputData.length();
return new TensorArray(RefIntStream.range(0, itemCnt)
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nonnull final Random random1 = new Random(seed);
Tensor tensor = inputData.get(dataIndex);
@Nullable final Tensor input = tensor.copy();
tensor.freeRef();
for (int i = 0; i < input.length(); i++) {
input.set(i, input.get(i) + random1.nextGaussian() * getValue());
}
return input;
}, inputData)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final int[] dimensions;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param dimensions the dimensions
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(int[] dimensions, Result.Accumulator accumulator, boolean alive) {
this.dimensions = dimensions;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor tensor = delta.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(dimensions);
passback.set((IntToDoubleFunction) tensor::get);
tensor.freeRef();
return passback;
}, delta)).toArray(Tensor[]::new));
this.accumulator.accept(buffer, tensorArray);
} else {
delta.freeRef();
buffer.freeRef();
}
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
}
}
}