com.simiacryptus.mindseye.layers.java.ImgPixelSumLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
/**
* The type Img pixel sum layer.
*/
@SuppressWarnings("serial")
public class ImgPixelSumLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(ImgPixelSumLayer.class);
/**
* Instantiates a new Img pixel sum layer.
*/
public ImgPixelSumLayer() {
super();
}
/**
* Instantiates a new Img pixel sum layer.
*
* @param json the json
*/
protected ImgPixelSumLayer(@Nonnull final JsonObject json) {
super(json);
}
/**
* From json img pixel sum layer.
*
* @param json the json
* @param rs the rs
* @return the img pixel sum layer
*/
@Nonnull
@SuppressWarnings("unused")
public static ImgPixelSumLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgPixelSumLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
Result result = eval(inObj[0].addRef());
RefUtil.freeRef(inObj);
return result;
}
/**
* Eval result.
*
* @param input the input
* @return the result
*/
@Nonnull
public Result eval(@Nonnull final Result input) {
final TensorList inputData = input.getData();
int[] inputDims = inputData.getDimensions();
assert 3 == inputDims.length;
TensorArray data = fwd(inputData, inputDims);
boolean alive = input.isAlive();
Accumulator accumulator = new Accumulator(inputDims, input.getAccumulator(), input.isAlive());
input.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ImgPixelSumLayer addRef() {
return (ImgPixelSumLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList inputData, int[] inputDims) {
TensorArray tensorArray = new TensorArray(inputData.stream().map(tensor -> {
Tensor outputTensor = new Tensor(inputDims[0], inputDims[1], 1);
outputTensor.setByCoord(RefUtil.wrapInterface(c -> {
return RefIntStream.range(0, inputDims[2]).mapToDouble(RefUtil.wrapInterface(i -> {
int[] coords = c.getCoords();
return tensor.get(coords[0], coords[1], i);
}, tensor == null ? null : tensor.addRef())).sum();
}, tensor));
return outputTensor;
}).toArray(Tensor[]::new));
inputData.freeRef();
return tensorArray;
}
private static class Accumulator extends Result.Accumulator {
private final int[] inputDims;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param inputDims the input dims
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(int[] inputDims, Result.Accumulator accumulator, boolean alive) {
this.inputDims = inputDims;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(delta.stream().map(deltaTensor -> {
int[] deltaDims = deltaTensor.getDimensions();
Tensor temp_47_0007 = new Tensor(deltaDims[0], deltaDims[1], inputDims[2]);
temp_47_0007.setByCoord(RefUtil.wrapInterface(c -> {
int[] coords = c.getCoords();
return deltaTensor.get(coords[0], coords[1], 0);
}, deltaTensor.addRef()));
Tensor temp_47_0003 = temp_47_0007.addRef();
temp_47_0007.freeRef();
deltaTensor.freeRef();
return temp_47_0003;
}).toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
}
}
}