com.simiacryptus.mindseye.layers.java.ImgTileSelectLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.google.gson.JsonPrimitive;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.notebook.NotebookOutput;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.*;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.Consumer;
import java.util.function.IntFunction;
/**
* The type Img tile select layer.
*/
@SuppressWarnings("serial")
public class ImgTileSelectLayer extends LayerBase {
private final boolean toroidal;
private final int sizeX;
private final int sizeY;
private final int positionX;
private final int positionY;
/**
* Instantiates a new Img tile select layer.
*
* @param sizeX the size x
* @param sizeY the size y
* @param positionX the position x
* @param positionY the position y
*/
public ImgTileSelectLayer(final int sizeX, final int sizeY, final int positionX, final int positionY) {
this(sizeX, sizeY, positionX, positionY, false);
}
/**
* Instantiates a new Img tile select layer.
*
* @param sizeX the size x
* @param sizeY the size y
* @param positionX the position x
* @param positionY the position y
* @param toroidal the toroidal
*/
public ImgTileSelectLayer(final int sizeX, final int sizeY, final int positionX, final int positionY,
final boolean toroidal) {
super();
this.sizeX = sizeX;
this.sizeY = sizeY;
this.positionX = positionX;
this.positionY = positionY;
this.toroidal = toroidal;
}
/**
* Instantiates a new Img tile select layer.
*
* @param json the json
*/
protected ImgTileSelectLayer(@Nonnull final JsonObject json) {
super(json);
sizeX = json.getAsJsonPrimitive("sizeX").getAsInt();
sizeY = json.getAsJsonPrimitive("sizeY").getAsInt();
positionX = json.getAsJsonPrimitive("positionX").getAsInt();
positionY = json.getAsJsonPrimitive("positionY").getAsInt();
JsonPrimitive toroidal = json.getAsJsonPrimitive("toroidal");
this.toroidal = null != toroidal && toroidal.getAsBoolean();
}
/**
* Copy.
*
* @param inputData the input data
* @param outputData the output data
* @param posX the pos x
* @param posY the pos y
* @param toroidal the toroidal
*/
public static void copy(@Nonnull final Tensor inputData, @Nonnull final Tensor outputData, final int posX,
final int posY, final boolean toroidal) {
@Nonnull final int[] inDim = inputData.getDimensions();
@Nonnull final int[] outDim = outputData.getDimensions();
assert 3 == inDim.length;
assert 3 == outDim.length;
assert inDim[2] == outDim[2] : RefArrays.toString(inDim) + "; " + RefArrays.toString(outDim);
outputData.coordStream(true).forEach(RefUtil.wrapInterface((Consumer super Coordinate>) c -> {
int x = c.getCoords()[0] + posX;
int y = c.getCoords()[1] + posY;
int z = c.getCoords()[2];
int width = inputData.getDimensions()[0];
int height = inputData.getDimensions()[1];
if (toroidal) {
while (x < 0)
x += width;
x %= width;
while (y < 0)
y += height;
y %= height;
}
double value;
if (x < 0) {
value = 0.0;
} else if (x >= width) {
value = 0.0;
} else if (y < 0) {
value = 0.0;
} else if (y >= height) {
value = 0.0;
} else {
value = inputData.get(x, y, z);
}
outputData.set(c, value);
}, outputData, inputData));
}
/**
* From json img tile select layer.
*
* @param json the json
* @param rs the rs
* @return the img tile select layer
*/
@Nonnull
@SuppressWarnings("unused")
public static ImgTileSelectLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ImgTileSelectLayer(json);
}
/**
* To tiles tensor [ ].
*
* @param log the log
* @param canvas the canvas
* @param width the width
* @param height the height
* @param strideX the stride x
* @param strideY the stride y
* @param offsetX the offset x
* @param offsetY the offset y
* @return the tensor [ ]
*/
@Nonnull
public static Tensor[] toTiles(@Nonnull final NotebookOutput log, @Nonnull final Tensor canvas, final int width, final int height,
final int strideX, final int strideY, final int offsetX, final int offsetY) {
@Nonnull final int[] inputDims = canvas.getDimensions();
int cols = (int) (Math.ceil((inputDims[0] - width - offsetX) * 1.0 / strideX) + 1);
int rows = (int) (Math.ceil((inputDims[1] - height - offsetY) * 1.0 / strideY) + 1);
log.p(RefString.format(
"Partition %s x %s png with %s x %s tile size into %s x %s grid with stride %s x %s offset %s x %s",
inputDims[0], inputDims[1], width, height, cols, rows, strideX, strideY, offsetX, offsetY));
Tensor[] tiles = new Tensor[rows * cols];
int index = 0;
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
int positionX = col * strideX + offsetX;
int positionY = row * strideY + offsetY;
ImgTileSelectLayer tileSelectLayer = new ImgTileSelectLayer(width, height, positionX, positionY,
offsetX < 0 || offsetY < 0);
TensorList temp_14_0006 = Result.getData(tileSelectLayer.eval(canvas.addRef()));
RefUtil.set(tiles, index++, temp_14_0006.get(0));
temp_14_0006.freeRef();
tileSelectLayer.freeRef();
}
}
canvas.freeRef();
return tiles;
}
/**
* Tile selectors img tile select layer [ ].
*
* @param log the log
* @param canvas the canvas
* @param width the width
* @param height the height
* @param strideX the stride x
* @param strideY the stride y
* @param offsetX the offset x
* @param offsetY the offset y
* @return the img tile select layer [ ]
*/
@Nonnull
public static ImgTileSelectLayer[] tileSelectors(@Nonnull final NotebookOutput log, @Nonnull final Tensor canvas, final int width,
final int height, final int strideX, final int strideY, final int offsetX, final int offsetY) {
@Nonnull final int[] inputDims = canvas.getDimensions();
canvas.freeRef();
int cols = (int) (Math.ceil((inputDims[0] - width - offsetX) * 1.0 / strideX) + 1);
int rows = (int) (Math.ceil((inputDims[1] - height - offsetY) * 1.0 / strideY) + 1);
log.p(RefString.format(
"Partition %s x %s png with %s x %s tile size into %s x %s grid with stride %s x %s offset %s x %s",
inputDims[0], inputDims[1], width, height, cols, rows, strideX, strideY, offsetX, offsetY));
ImgTileSelectLayer[] tiles = new ImgTileSelectLayer[rows * cols];
int index = 0;
for (int row = 0; row < rows; row++) {
for (int col = 0; col < cols; col++) {
int positionX = col * strideX + offsetX;
int positionY = row * strideY + offsetY;
RefUtil.set(tiles, index++,
new ImgTileSelectLayer(width, height, positionX, positionY,
offsetX < 0 || offsetY < 0));
}
}
return tiles;
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
final Result input = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList batch = input.getData();
boolean alive = input.isAlive();
@Nonnull final int[] inputDims = batch.getDimensions();
assert 3 == inputDims.length;
@Nonnull final int[] dimOut = getViewDimensions(inputDims, new int[]{sizeX, sizeY, inputDims[2]},
new int[]{positionX, positionY, 0});
Result.Accumulator accumulator = new Accumulator(positionX, positionY, toroidal, inputDims, input.getAccumulator(), alive);
input.freeRef();
return new Result(fwd(batch, dimOut), accumulator, alive);
}
/**
* Get view dimensions int [ ].
*
* @param sourceDimensions the source dimensions
* @param destinationDimensions the destination dimensions
* @param offset the offset
* @return the int [ ]
*/
@Nonnull
public int[] getViewDimensions(int[] sourceDimensions, int[] destinationDimensions, int[] offset) {
@Nonnull final int[] viewDim = new int[3];
RefArrays.parallelSetAll(viewDim, i -> toroidal ? destinationDimensions[i]
: Math.min(sourceDimensions[i], destinationDimensions[i] + offset[i]) - Math.max(offset[i], 0));
return viewDim;
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("sizeX", sizeX);
json.addProperty("sizeY", sizeY);
json.addProperty("positionX", positionX);
json.addProperty("positionY", positionY);
json.addProperty("toroidal", toroidal);
return json;
}
@Nonnull
@Override
public RefList state() {
return new RefArrayList<>();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ImgTileSelectLayer addRef() {
return (ImgTileSelectLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList batch, int[] dimOut) {
return new TensorArray(RefIntStream.range(0, batch.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nonnull final Tensor outputData = new Tensor(dimOut);
Tensor inputData = batch.get(dataIndex);
copy(inputData.addRef(), outputData.addRef(),
positionX, positionY, toroidal);
inputData.freeRef();
return outputData;
}, batch)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final int[] inputDims;
private int positionX;
private int positionY;
private boolean toroidal;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param positionX the position x
* @param positionY the position y
* @param toroidal the toroidal
* @param inputDims the input dims
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(int positionX, int positionY, boolean toroidal, int[] inputDims, Result.Accumulator accumulator, boolean alive) {
this.inputDims = inputDims;
this.positionX = positionX;
this.positionY = positionY;
this.toroidal = toroidal;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList error) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, error.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nullable final Tensor err = error.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(inputDims);
copy(err.addRef(), passback.addRef(), -positionX,
-positionY, toroidal);
err.freeRef();
return passback;
}, error.addRef())).toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
error.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
}
}
}