com.simiacryptus.mindseye.layers.java.LinearActivationLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import com.simiacryptus.ref.wrappers.RefString;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Linear activation layer.
*/
@SuppressWarnings("serial")
public class LinearActivationLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(LinearActivationLayer.class);
@Nullable
private final Tensor weights;
/**
* Instantiates a new Linear activation layer.
*/
public LinearActivationLayer() {
this(1.);
}
/**
* Instantiates a new Linear activation layer.
*
* @param scale the scale
*/
public LinearActivationLayer(double scale) {
this(scale, 0.);
}
/**
* Instantiates a new Linear activation layer.
*
* @param scale the scale
* @param bias the bias
*/
public LinearActivationLayer(double scale, double bias) {
super();
weights = new Tensor(2);
weights.set(0, scale);
weights.set(1, bias);
}
/**
* Instantiates a new Linear activation layer.
*
* @param json the json
* @param resources the resources
*/
protected LinearActivationLayer(@Nonnull final JsonObject json, Map resources) {
super(json);
weights = Tensor.fromJson(json.get("weights"), resources);
}
/**
* Gets bias.
*
* @return the bias
*/
public double getBias() {
assert weights != null;
return weights.get(1);
}
/**
* Sets bias.
*
* @param bias the bias
*/
public void setBias(double bias) {
if (!Double.isFinite(bias))
throw new IllegalArgumentException();
assert weights != null;
weights.set(1, bias);
}
@Nullable
@Override
public String getName() {
String eqStr = isFrozen() ? "== " : "=> ";
assert weights != null;
if (weights.get(0) == 1.0) {
return eqStr + RefString.format("x + %.1e", weights.get(1)) + (isFrozen() ? "" : "!");
} else if (weights.get(1) == 0.0) {
return eqStr + RefString.format("%.1e x", weights.get(0)) + (isFrozen() ? "" : "!");
} else {
return eqStr + RefString.format("%.1e x + %.1e", weights.get(0), weights.get(1));
}
}
/**
* Gets scale.
*
* @return the scale
*/
public double getScale() {
assert weights != null;
return weights.get(0);
}
/**
* Sets scale.
*
* @param scale the scale
*/
public void setScale(double scale) {
if (!Double.isFinite(scale))
throw new IllegalArgumentException();
assert weights != null;
weights.set(0, scale);
}
/**
* From json linear activation layer.
*
* @param json the json
* @param rs the rs
* @return the linear activation layer
*/
@Nonnull
@SuppressWarnings("unused")
public static LinearActivationLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new LinearActivationLayer(json, rs);
}
@Nonnull
@Override
public Result eval(@Nullable final Result... inObj) {
assert inObj != null;
final Result in0 = inObj[0].addRef();
RefUtil.freeRef(inObj);
boolean alive = in0.isAlive();
TensorArray data = fwd(in0.getData());
Result.Accumulator accumulator = new Accumulator(in0.getData(), weights.addRef(), getId(), isFrozen(), in0.getAccumulator(), alive);
in0.freeRef();
return new Result(data, accumulator, alive || !isFrozen());
}
@Nonnull
@Override
public JsonObject getJson(Map resources, @Nonnull DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
assert weights != null;
json.add("weights", weights.getJson(resources, dataSerializer));
return json;
}
@Nonnull
@Override
public RefList state() {
assert weights != null;
return RefArrays.asList(weights.getData());
}
public void _free() {
if (null != weights)
weights.freeRef();
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
LinearActivationLayer addRef() {
return (LinearActivationLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList inData) {
final int itemCnt = inData.length();
assert weights != null;
final double scale = weights.get(0);
final double bias = weights.get(1);
return new TensorArray(RefIntStream.range(0, itemCnt)
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor inputTensor = inData.get(dataIndex);
Tensor outputTensor = inputTensor.map(v -> {
final double r = scale * v + bias;
return Double.isFinite(r) ? r : 0;
});
inputTensor.freeRef();
return outputTensor;
}, inData)).toArray(Tensor[]::new));
}
private static class Accumulator extends Result.Accumulator {
private final TensorList inData;
private Tensor weights;
private UUID id;
private boolean frozen;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param inData the in data
* @param weights the weights
* @param id the id
* @param frozen the frozen
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(TensorList inData, Tensor weights, UUID id, boolean frozen, Result.Accumulator accumulator, boolean alive) {
this.inData = inData;
this.weights = weights;
this.id = id;
this.frozen = frozen;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nonnull DeltaSet buffer, @Nonnull TensorList delta) {
if (!frozen) {
RefIntStream.range(0, delta.length()).forEach(RefUtil.wrapInterface(dataIndex -> {
@Nullable
Tensor deltaT = delta.get(dataIndex);
@Nullable
Tensor inputT = inData.get(dataIndex);
@Nullable final double[] deltaData = deltaT.getData();
@Nullable final double[] inputData = inputT.getData();
@Nonnull final Tensor weightDelta = new Tensor(weights.getDimensions());
for (int i = 0; i < deltaData.length; i++) {
weightDelta.add(0, deltaData[i] * inputData[inputData.length == 1 ? 0 : i]);
weightDelta.add(1, deltaData[i]);
}
deltaT.freeRef();
inputT.freeRef();
Delta temp_04_0006 = buffer.get(id, weights.getData());
assert temp_04_0006 != null;
temp_04_0006.addInPlace(weightDelta.getData());
temp_04_0006.freeRef();
weightDelta.freeRef();
}, buffer.addRef(), inData.addRef(), weights.addRef(), delta.addRef()));
}
if (alive) {
@Nonnull final TensorList tensorList = new TensorArray(RefIntStream.range(0, delta.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nullable
Tensor tensor = delta.get(dataIndex);
@Nullable final double[] deltaData = tensor.getData();
tensor.freeRef();
@Nonnull final Tensor passback = new Tensor(inData.getDimensions());
for (int i = 0; i < passback.length(); i++) {
passback.set(i, deltaData[i] * weights.get(0));
}
return passback;
}, inData.addRef(), delta.addRef()))
.toArray(Tensor[]::new));
this.accumulator.accept(buffer.addRef(), tensorList);
}
delta.freeRef();
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
inData.freeRef();
weights.freeRef();
accumulator.freeRef();
}
}
}