com.simiacryptus.mindseye.layers.java.LogActivationLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.DataSerializer;
import javax.annotation.Nonnull;
import java.util.Map;
/**
* The type Log activation layer.
*/
@SuppressWarnings("serial")
public final class LogActivationLayer extends SimpleActivationLayer {
/**
* Instantiates a new Log activation layer.
*/
public LogActivationLayer() {
}
/**
* Instantiates a new Log activation layer.
*
* @param id the id
*/
protected LogActivationLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json log activation layer.
*
* @param json the json
* @param rs the rs
* @return the log activation layer
*/
@Nonnull
@SuppressWarnings("unused")
public static LogActivationLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new LogActivationLayer(json);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
LogActivationLayer addRef() {
return (LogActivationLayer) super.addRef();
}
@Override
protected final void eval(final double x, final double[] results) {
if (x < 0) {
eval(-x, results);
results[0] *= 1;
results[1] *= -1;
} else if (x > 0) {
final double minDeriv = 0;
final double d = 0 == x ? Double.NaN : 1 / x;
final double f = 0 == x ? Double.NEGATIVE_INFINITY : Math.log(Math.abs(x));
assert Double.isFinite(d);
assert minDeriv <= Math.abs(d);
results[0] = f;
results[1] = d;
} else {
results[0] = 0;
results[1] = 0;
}
}
}