All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.simiacryptus.mindseye.layers.java.MaxDropoutNoiseLayer Maven / Gradle / Ivy

The newest version!
/*
 * Copyright (c) 2019 by Andrew Charneski.
 *
 * The author licenses this file to you under the
 * Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance
 * with the License.  You may obtain a copy
 * of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.simiacryptus.mindseye.layers.java;

import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.*;
import com.simiacryptus.util.JsonUtil;
import com.simiacryptus.util.Util;
import com.simiacryptus.util.data.IntArray;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.Function;
import java.util.function.IntFunction;

/**
 * The type Max dropout noise layer.
 */
@SuppressWarnings("serial")
public class MaxDropoutNoiseLayer extends LayerBase {

  @SuppressWarnings("unused")
  private static final Logger log = LoggerFactory.getLogger(MaxDropoutNoiseLayer.class);
  @Nullable
  private final int[] kernelSize;
  private final Function>> getCellMap_cached = Util.cache(this::getCellMap);

  /**
   * Instantiates a new Max dropout noise layer.
   */
  public MaxDropoutNoiseLayer() {
    this(2, 2);
  }

  /**
   * Instantiates a new Max dropout noise layer.
   *
   * @param dims the dims
   */
  public MaxDropoutNoiseLayer(@Nullable final int... dims) {
    super();
    kernelSize = dims;
  }

  /**
   * Instantiates a new Max dropout noise layer.
   *
   * @param json the json
   */
  protected MaxDropoutNoiseLayer(@Nonnull final JsonObject json) {
    super(json);
    kernelSize = JsonUtil.getIntArray(json.getAsJsonArray("kernelSize"));
  }

  /**
   * From json max dropout noise layer.
   *
   * @param json the json
   * @param rs   the rs
   * @return the max dropout noise layer
   */
  @Nonnull
  @SuppressWarnings("unused")
  public static MaxDropoutNoiseLayer fromJson(@Nonnull final JsonObject json, Map rs) {
    return new MaxDropoutNoiseLayer(json);
  }

  @Nonnull
  @Override
  public Result eval(@Nullable final Result... inObj) {
    assert inObj != null;
    final Result in0 = inObj[0].addRef();
    RefUtil.freeRef(inObj);
    final TensorList data0 = in0.getData();
    final Tensor[] mask = getMask(data0.addRef());
    boolean alive = in0.isAlive();
    Result.Accumulator accumulator = new Accumulator(RefUtil.addRef(mask), data0.addRef(), in0.getAccumulator(), in0.isAlive());
    in0.freeRef();
    TensorArray data = fwd(data0, mask);
    return new Result(data, accumulator, alive);
  }

  @Nonnull
  @Override
  public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
    @Nonnull final JsonObject json = super.getJsonStub();
    assert kernelSize != null;
    json.add("kernelSize", JsonUtil.getJson(kernelSize));
    return json;
  }

  @Nonnull
  @Override
  public RefList state() {
    return RefArrays.asList();
  }

  public @SuppressWarnings("unused")
  void _free() {
    RefUtil.freeRef(getCellMap_cached);
    super._free();
  }

  @Nonnull
  public @Override
  @SuppressWarnings("unused")
  MaxDropoutNoiseLayer addRef() {
    return (MaxDropoutNoiseLayer) super.addRef();
  }

  @NotNull
  private Tensor[] getMask(TensorList data0) {
    return RefIntStream.range(0, data0.length())
        .mapToObj(RefUtil.wrapInterface((IntFunction) dataIndex -> {
          @Nullable final Tensor input = data0.get(dataIndex);
          @Nullable final Tensor output = input.map(x -> 0);
          final RefList> cells = getCellMap_cached.apply(new IntArray(output.getDimensions()));
          try {
            cells.forEach(cell -> {
              try {
                output.set(RefUtil.get(cell.stream()
                    .max(RefComparator.comparingDouble(
                        coords -> input.get(coords)
                    ))), 1);
              } finally {
                cell.freeRef();
              }
            });
          } finally {
            cells.freeRef();
            input.freeRef();
          }
          return output;
        }, data0)).toArray(Tensor[]::new);
  }

  @NotNull
  private TensorArray fwd(TensorList data0, Tensor[] mask) {
    return new TensorArray(RefIntStream.range(0, data0.length())
        .mapToObj(RefUtil.wrapInterface((IntFunction) dataIndex -> {
          Tensor inputData = data0.get(dataIndex);
          @Nullable final double[] input = inputData.getData();
          @Nullable final double[] maskT = mask[dataIndex].getData();
          @Nonnull final Tensor output = new Tensor(inputData.getDimensions());
          inputData.freeRef();
          @Nullable final double[] outputData = output.getData();
          for (int i = 0; i < outputData.length; i++) {
            outputData[i] = input[i] * maskT[i];
          }
          return output;
        }, data0, mask)).toArray(Tensor[]::new));
  }

  @Nonnull
  private RefList> getCellMap(@Nonnull final IntArray dims) {
    Tensor tensor = new Tensor(dims.data);
    RefMap> temp_42_0005 = tensor.coordStream(true)
        .collect(RefCollectors.groupingBy((@Nonnull final Coordinate c) -> {
          int[] coords = c.getCoords();
          int cellId = 0;
          int max = 0;
          for (int dim = 0; dim < dims.size(); dim++) {
            assert kernelSize != null;
            final int pos = coords[dim] / kernelSize[dim];
            cellId = cellId * max + pos;
            max = dims.get(dim) / kernelSize[dim];
          }
          return cellId;
        }));
    RefArrayList> temp_42_0004 = new RefArrayList<>(temp_42_0005.values());
    temp_42_0005.freeRef();
    tensor.freeRef();
    return temp_42_0004;
  }

  private static class Accumulator extends Result.Accumulator {

    private final Tensor[] mask;
    private final TensorList data0;
    private Result.Accumulator accumulator;
    private boolean alive;

    /**
     * Instantiates a new Accumulator.
     *
     * @param mask        the mask
     * @param data0       the data 0
     * @param accumulator the accumulator
     * @param alive       the alive
     */
    public Accumulator(Tensor[] mask, TensorList data0, Result.Accumulator accumulator, boolean alive) {
      this.mask = mask;
      this.data0 = data0;
      this.accumulator = accumulator;
      this.alive = alive;
    }

    @Override
    public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
      if (alive) {
        @Nonnull
        TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length())
            .mapToObj(RefUtil.wrapInterface((IntFunction) dataIndex -> {
                  Tensor deltaTensor = delta.get(dataIndex);
                  @Nullable final double[] deltaData = deltaTensor.getData();
                  deltaTensor.freeRef();
                  @Nonnull final int[] dims = data0.getDimensions();
                  @Nullable final double[] maskData = mask[dataIndex].getData();
                  @Nonnull final Tensor passback = new Tensor(dims);
                  for (int i = 0; i < passback.length(); i++) {
                    passback.set(i, maskData[i] * deltaData[i]);
                  }
                  return passback;
                }, data0.addRef(), delta,
                RefUtil.addRef(mask)))
            .toArray(Tensor[]::new));
        this.accumulator.accept(buffer, tensorArray);
      } else {
        delta.freeRef();
        if (null != buffer)
          buffer.freeRef();
      }
    }

    public @SuppressWarnings("unused")
    void _free() {
      super._free();
      RefUtil.freeRef(mask);
      data0.freeRef();
      accumulator.freeRef();
    }
  }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy