com.simiacryptus.mindseye.layers.java.MaxImageBandLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.*;
import org.jetbrains.annotations.NotNull;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Max image band layer.
*/
@SuppressWarnings("serial")
public class MaxImageBandLayer extends LayerBase {
@SuppressWarnings("unused")
private static final Logger log = LoggerFactory.getLogger(MaxImageBandLayer.class);
/**
* Instantiates a new Max image band layer.
*/
public MaxImageBandLayer() {
super();
}
/**
* Instantiates a new Max image band layer.
*
* @param id the id
*/
protected MaxImageBandLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json max image band layer.
*
* @param json the json
* @param rs the rs
* @return the max image band layer
*/
@Nonnull
@SuppressWarnings("unused")
public static MaxImageBandLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new MaxImageBandLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
assert 1 == inObj.length;
final TensorList inputData = inObj[0].getData();
inputData.length();
@Nonnull final int[] inputDims = inputData.getDimensions();
assert 3 == inputDims.length;
final Coordinate[][] maxCoords = inputData.stream().map(data -> {
return RefIntStream.range(0, inputDims[2])
.mapToObj(RefUtil.wrapInterface((IntFunction extends Coordinate>) band -> {
return RefUtil.get(data.coordStream(true).filter(e -> e.getCoords()[2] == band)
.max(RefComparator
.comparingDouble(RefUtil.wrapInterface(data::get,
data.addRef()))));
}, data)).toArray(Coordinate[]::new);
}).toArray(Coordinate[][]::new);
TensorArray data = fwd(inputData.addRef(), inputDims[2], maxCoords);
boolean alive = inObj[0].isAlive();
final Result.Accumulator accumulator1 = inObj[0].getAccumulator();
final boolean alive1 = inObj[0].isAlive();
Accumulator accumulator = new Accumulator(inputData, inputDims, maxCoords, accumulator1, alive1);
RefUtil.freeRef(inObj);
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
MaxImageBandLayer addRef() {
return (MaxImageBandLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList inputData, int inputDim, Coordinate[][] maxCoords) {
return new TensorArray(RefIntStream.range(0, inputData.length())
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor inTensor = inputData.get(dataIndex);
final RefDoubleStream doubleStream = RefIntStream.range(0, inputDim)
.mapToDouble(RefUtil.wrapInterface(band -> {
final int[] maxCoord = maxCoords[dataIndex][band].getCoords();
return inTensor.get(maxCoord[0], maxCoord[1], band);
}, inTensor));
Tensor outTensor = new Tensor(1, 1, inputDim);
outTensor.set(Tensor.getDoubles(doubleStream, inputDim));
return outTensor;
}, inputData)).toArray(Tensor[]::new));
}
/**
* The type Calc regions parameter.
*/
public static class CalcRegionsParameter {
/**
* The Input dims.
*/
public final int[] inputDims;
/**
* The Kernel dims.
*/
public final int[] kernelDims;
/**
* Instantiates a new Calc regions parameter.
*
* @param inputDims the input dims
* @param kernelDims the kernel dims
*/
public CalcRegionsParameter(final int[] inputDims, final int[] kernelDims) {
this.inputDims = inputDims;
this.kernelDims = kernelDims;
}
@Override
public boolean equals(@Nullable final Object obj) {
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
final MaxImageBandLayer.CalcRegionsParameter other = (MaxImageBandLayer.CalcRegionsParameter) obj;
if (!RefArrays.equals(inputDims, other.inputDims)) {
return false;
}
return RefArrays.equals(kernelDims, other.kernelDims);
}
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + RefArrays.hashCode(inputDims);
result = prime * result + RefArrays.hashCode(kernelDims);
return result;
}
}
private static class Accumulator extends Result.Accumulator {
private final TensorList inputData;
private final int[] inputDims;
private final Coordinate[][] maxCoords;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param inputData the input data
* @param inputDims the input dims
* @param maxCoords the max coords
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(TensorList inputData, int[] inputDims, Coordinate[][] maxCoords, Result.Accumulator accumulator, boolean alive) {
this.inputData = inputData;
this.inputDims = inputDims;
this.maxCoords = maxCoords;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, delta.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor deltaTensor = delta.get(dataIndex);
@Nonnull final Tensor passback = new Tensor(inputData.getDimensions());
RefIntStream.range(0, inputDims[2]).forEach(RefUtil.wrapInterface(b -> {
final int[] maxCoord = maxCoords[dataIndex][b].getCoords();
passback.set(new int[]{maxCoord[0], maxCoord[1], b}, deltaTensor.get(0, 0, b));
}, passback.addRef(),
deltaTensor));
return passback;
}, delta.addRef(), inputData.addRef()))
.toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
RefUtil.freeRef(accumulator);
inputData.freeRef();
}
}
}