![JAR search and dependency download from the Maven repository](/logo.png)
com.simiacryptus.mindseye.layers.java.ProductInputsLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.Function;
import java.util.function.IntFunction;
import static com.simiacryptus.mindseye.lang.Result.anyAlive;
/**
* The type Product inputs layer.
*/
@SuppressWarnings("serial")
public class ProductInputsLayer extends LayerBase {
/**
* Instantiates a new Product inputs layer.
*/
public ProductInputsLayer() {
}
/**
* Instantiates a new Product inputs layer.
*
* @param id the id
*/
protected ProductInputsLayer(@Nonnull final JsonObject id) {
super(id);
}
/**
* From json product inputs layer.
*
* @param json the json
* @param rs the rs
* @return the product inputs layer
*/
@Nonnull
@SuppressWarnings("unused")
public static ProductInputsLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new ProductInputsLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
assert inObj.length > 1;
for (int i = 1; i < inObj.length; i++) {
TensorList temp_57_0011 = inObj[0].getData();
final int dim0 = Tensor.length(temp_57_0011.getDimensions());
temp_57_0011.freeRef();
TensorList temp_57_0012 = inObj[i].getData();
final int dimI = Tensor.length(temp_57_0012.getDimensions());
temp_57_0012.freeRef();
if (dim0 != 1 && dimI != 1 && dim0 != dimI) {
TensorList temp_57_0013 = inObj[0].getData();
TensorList temp_57_0014 = inObj[i].getData();
IllegalArgumentException temp_57_0010 = new IllegalArgumentException(
RefArrays.toString(temp_57_0013.getDimensions()) + " != "
+ RefArrays.toString(temp_57_0014.getDimensions()));
temp_57_0014.freeRef();
temp_57_0013.freeRef();
RefUtil.freeRef(inObj);
throw temp_57_0010;
}
}
boolean alive = anyAlive(RefUtil.addRef(inObj));
TensorList data = fwd(RefUtil.addRef(inObj));
Accumulator accumulator = new Accumulator(inObj);
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
return super.getJsonStub();
}
@Nonnull
@Override
public RefList state() {
return RefArrays.asList();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ProductInputsLayer addRef() {
return (ProductInputsLayer) super.addRef();
}
@NotNull
private TensorList fwd(@Nonnull Result[] inObj) {
return RefUtil.get(RefArrays.stream(inObj).parallel().map(x -> {
return Result.getData(x);
}).reduce((l, r) -> {
return new TensorArray(
RefIntStream.range(0, Math.max(l.length(), r.length())).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) i1 -> {
return Tensor.product(
l.get(1 == l.length() ? 0 : i1),
r.get(1 == r.length() ? 0 : i1));
}, l, r)).toArray(Tensor[]::new));
}));
}
private static class Accumulator extends Result.Accumulator {
private final Result[] inObj;
/**
* Instantiates a new Accumulator.
*
* @param inObj the in obj
*/
public Accumulator(Result... inObj) {
this.inObj = inObj;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList delta) {
for (@Nonnull final Result input : inObj) {
if (input.isAlive()) {
@Nonnull
TensorList passback = RefUtil.get(RefArrays.stream(RefUtil.addRef(inObj)).parallel()
.map(RefUtil.wrapInterface((Function) x -> {
TensorList temp_57_0004 = x == input ? delta.addRef() : x.getData();
x.freeRef();
return temp_57_0004;
}, delta.addRef(), input.addRef())).reduce((l, r) -> {
return new TensorArray(RefIntStream.range(0, Math.max(l.length(), r.length()))
.parallel().mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) j -> {
@Nullable final Tensor left = l.get(1 == l.length() ? 0 : j);
@Nullable final Tensor right = r.get(1 == r.length() ? 0 : j);
Tensor temp_57_0006 = Tensor.product(left.addRef(),
right.addRef());
right.freeRef();
left.freeRef();
return temp_57_0006;
}, l, r)).toArray(Tensor[]::new));
}));
final TensorList inputData = input.getData();
if (1 == inputData.length() && 1 < passback.length()) {
TensorArray passback1 = new TensorArray(RefUtil.get(passback.stream().reduce((a, b) -> {
return Tensor.add(a, b);
})));
passback.freeRef();
passback = passback1;
}
if (1 == Tensor.length(inputData.getDimensions()) && 1 < Tensor.length(passback.getDimensions())) {
TensorArray passback1 = new TensorArray(passback.stream().map(a -> {
Tensor temp_57_0008 = new Tensor(a.sum());
a.freeRef();
return temp_57_0008;
}).toArray(Tensor[]::new));
passback.freeRef();
passback = passback1;
}
inputData.freeRef();
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
Result.Accumulator accumulator = input.getAccumulator();
try {
accumulator.accept(buffer1, passback);
} finally {
accumulator.freeRef();
}
}
}
delta.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
RefUtil.freeRef(inObj);
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy