com.simiacryptus.mindseye.layers.java.UnpoolingLayer Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-java Show documentation
Show all versions of mindseye-java Show documentation
Pure Java Neural Networks Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.java;
import com.google.gson.JsonObject;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrayList;
import com.simiacryptus.ref.wrappers.RefIntStream;
import com.simiacryptus.ref.wrappers.RefList;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.Map;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Unpooling layer.
*/
@SuppressWarnings("serial")
public class UnpoolingLayer extends LayerBase {
private final int sizeX;
private final int sizeY;
/**
* Instantiates a new Unpooling layer.
*
* @param sizeX the size x
* @param sizeY the size y
*/
public UnpoolingLayer(final int sizeX, final int sizeY) {
super();
this.sizeX = sizeX;
this.sizeY = sizeY;
}
/**
* Instantiates a new Unpooling layer.
*
* @param json the json
*/
protected UnpoolingLayer(@Nonnull final JsonObject json) {
super(json);
sizeX = json.getAsJsonPrimitive("sizeX").getAsInt();
sizeY = json.getAsJsonPrimitive("sizeY").getAsInt();
}
/**
* Copy condense tensor.
*
* @param inputData the input data
* @param outputData the output data
* @return the tensor
*/
@Nonnull
public static Tensor copyCondense(@Nonnull final Tensor inputData, @Nonnull final Tensor outputData) {
@Nonnull final int[] inDim = inputData.getDimensions();
@Nonnull final int[] outDim = outputData.getDimensions();
assert 3 == inDim.length;
assert 3 == outDim.length;
assert inDim[0] >= outDim[0];
assert inDim[1] >= outDim[1];
assert inDim[2] == outDim[2];
assert 0 == inDim[0] % outDim[0];
assert 0 == inDim[1] % outDim[1];
final int kernelSizeX = inDim[0] / outDim[0];
final int kernelSizeY = inDim[0] / outDim[0];
int index = 0;
@Nullable final double[] outputDataData = outputData.getData();
for (int z = 0; z < inDim[2]; z++) {
for (int y = 0; y < inDim[1]; y += kernelSizeY) {
for (int x = 0; x < inDim[0]; x += kernelSizeX) {
int xx = kernelSizeX / 2;
int yy = kernelSizeY / 2;
final double value = inputData.get(x + xx, y + yy, z);
// final double value = IntStream.range(0, kernelSizeX).mapToDouble(i -> i).flatMap(xx -> {
// return IntStream.range(0, kernelSizeY).mapToDouble(yy -> {
// return inputData.get((int) (finalX + xx), finalY + yy, finalZ);
// });
// }).sum();
outputData.set(x / kernelSizeX, y / kernelSizeY, z, value);
}
}
}
inputData.freeRef();
return outputData;
}
/**
* Copy expand tensor.
*
* @param inputData the input data
* @param outputData the output data
* @return the tensor
*/
@Nonnull
public static Tensor copyExpand(@Nonnull final Tensor inputData, @Nonnull final Tensor outputData) {
@Nonnull final int[] inDim = inputData.getDimensions();
@Nonnull final int[] outDim = outputData.getDimensions();
assert 3 == inDim.length;
assert 3 == outDim.length;
assert inDim[0] <= outDim[0];
assert inDim[1] <= outDim[1];
assert inDim[2] == outDim[2];
assert 0 == outDim[0] % inDim[0];
assert 0 == outDim[1] % inDim[1];
final int kernelSizeX = outDim[0] / inDim[0];
final int kernelSizeY = outDim[0] / inDim[0];
for (int z = 0; z < outDim[2]; z++) {
for (int y = 0; y < outDim[1]; y += kernelSizeY) {
for (int x = 0; x < outDim[0]; x += kernelSizeX) {
final double value = inputData.get(x / kernelSizeX, y / kernelSizeY, z);
int xx = kernelSizeX / 2;
int yy = kernelSizeY / 2;
outputData.set(x + xx, y + yy, z, value);
// for (int xx = 0; xx < kernelSizeX; xx++) {
// for (int yy = 0; yy < kernelSizeY; yy++) {
// outputData.set(x + xx, y + yy, z, value);
// }
// }
}
}
}
inputData.freeRef();
return outputData;
}
/**
* From json unpooling layer.
*
* @param json the json
* @param rs the rs
* @return the unpooling layer
*/
@Nonnull
@SuppressWarnings("unused")
public static UnpoolingLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new UnpoolingLayer(json);
}
@Nonnull
@Override
public Result eval(@Nonnull final Result... inObj) {
//assert Arrays.stream(inObj).flatMapToDouble(input-> input.getData().stream().flatMapToDouble(x-> Arrays.stream(x.getData()))).allMatch(v->Double.isFinite(v));
final Result input = inObj[0].addRef();
RefUtil.freeRef(inObj);
final TensorList batch = input.getData();
@Nonnull final int[] inputDims = batch.getDimensions();
assert 3 == inputDims.length;
TensorArray data = fwd(batch, inputDims);
boolean alive = input.isAlive();
Result.Accumulator accumulator = new Accumulator(inputDims, input.getAccumulator(), input.isAlive());
input.freeRef();
return new Result(data, accumulator, alive);
}
@Nonnull
@Override
public JsonObject getJson(Map resources, DataSerializer dataSerializer) {
@Nonnull final JsonObject json = super.getJsonStub();
json.addProperty("sizeX", sizeX);
json.addProperty("sizeY", sizeX);
return json;
}
@Nonnull
@Override
public RefList state() {
return new RefArrayList<>();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
UnpoolingLayer addRef() {
return (UnpoolingLayer) super.addRef();
}
@NotNull
private TensorArray fwd(TensorList batch, int[] inputDims) {
Tensor outputDims = new Tensor(inputDims[0] * sizeX, inputDims[1] * sizeY, inputDims[2]);
TensorArray data = new TensorArray(RefIntStream.range(0, batch.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
Tensor inputData = batch.get(dataIndex);
Tensor temp_58_0002 = UnpoolingLayer.copyExpand(inputData.addRef(),
outputDims.copy());
inputData.freeRef();
return temp_58_0002;
}, outputDims.addRef(), batch.addRef()))
.toArray(Tensor[]::new));
outputDims.freeRef();
batch.freeRef();
return data;
}
private static class Accumulator extends Result.Accumulator {
private final int[] inputDims;
private Result.Accumulator accumulator;
private boolean alive;
/**
* Instantiates a new Accumulator.
*
* @param inputDims the input dims
* @param accumulator the accumulator
* @param alive the alive
*/
public Accumulator(int[] inputDims, Result.Accumulator accumulator, boolean alive) {
this.inputDims = inputDims;
this.accumulator = accumulator;
this.alive = alive;
}
@Override
public void accept(@Nullable DeltaSet buffer, @Nonnull TensorList error) {
//assert error.stream().flatMapToDouble(x-> Arrays.stream(x.getData())).allMatch(v->Double.isFinite(v));
if (alive) {
@Nonnull
TensorArray tensorArray = new TensorArray(RefIntStream.range(0, error.length()).parallel()
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tensor>) dataIndex -> {
@Nonnull final Tensor passback = new Tensor(inputDims);
@Nullable final Tensor err = error.get(dataIndex);
return UnpoolingLayer.copyCondense(err, passback);
}, error.addRef())).toArray(Tensor[]::new));
DeltaSet buffer1 = buffer == null ? null : buffer.addRef();
this.accumulator.accept(buffer1, tensorArray);
}
error.freeRef();
if (null != buffer)
buffer.freeRef();
}
public @SuppressWarnings("unused")
void _free() {
super._free();
accumulator.freeRef();
}
}
}