com.simiacryptus.mindseye.opt.region.LinearSumConstraint Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-research Show documentation
Show all versions of mindseye-research Show documentation
Experimental Optimizers and Neural Networks
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.opt.region;
import javax.annotation.Nonnull;
public class LinearSumConstraint implements TrustRegion {
private boolean permitDecrease = true;
public boolean isPermitDecrease() {
return permitDecrease;
}
@Nonnull
public LinearSumConstraint setPermitDecrease(final boolean permitDecrease) {
this.permitDecrease = permitDecrease;
return this;
}
@Nonnull
@Override
public double[] project(final double[] weights, @Nonnull final double[] point) {
double deltaSum = 0;
for (int i = 0; i < point.length; i++) {
deltaSum += (point[i] - weights[i]) * sign(point[i]);
}
if (deltaSum <= 0 && permitDecrease) return point;
deltaSum /= point.length;
@Nonnull final double[] returnValue = new double[point.length];
for (int i = 0; i < point.length; i++) {
returnValue[i] = point[i] - deltaSum * sign(point[i]);
}
return returnValue;
}
public int sign(final double weight) {
return weight > 0 ? 1 : -1;
}
}