com.simiacryptus.mindseye.layers.tensorflow.LRNLayer Maven / Gradle / Ivy
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.layers.tensorflow;
import com.google.gson.JsonObject;
import com.google.protobuf.InvalidProtocolBufferException;
import com.simiacryptus.mindseye.lang.DataSerializer;
import com.simiacryptus.ref.wrappers.RefHashMap;
import com.simiacryptus.util.Util;
import org.tensorflow.Graph;
import org.tensorflow.framework.GraphDef;
import org.tensorflow.op.Ops;
import org.tensorflow.op.nn.LocalResponseNormalization;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.*;
public class LRNLayer extends TFLayerBase {
private long radius = 5L;
private float beta = .5f;
private float alpha = 1.0f;
private float bias = 1.0f;
public LRNLayer() {
super(new RefHashMap<>());
}
public LRNLayer(@Nonnull JsonObject json, Map rs) {
super(json, rs);
setRadius((json.get("width").getAsInt() - 1) / 2);
setAlpha((float) (json.get("alpha").getAsDouble() / (double) (getRadius() * 2 + 1)));
setBeta((float) json.get("beta").getAsDouble());
setBias((float) json.get("k").getAsDouble());
}
public float getAlpha() {
return alpha;
}
public void setAlpha(float alpha) {
this.alpha = alpha;
}
public float getBeta() {
return beta;
}
public void setBeta(float beta) {
this.beta = beta;
}
public float getBias() {
return bias;
}
public void setBias(float bias) {
this.bias = bias;
}
@Override
public GraphDef getGraphDef() {
try (Graph graph = new Graph()) {
Ops ops = Ops.create(graph);
ops.withName(getOutputNode()).nn.localResponseNormalization(ops.withName(getInputNodes().get(0)).placeholder(Float.class),
LocalResponseNormalization.depthRadius(getRadius()).beta(getBeta()).alpha(getAlpha()).bias(getBias()));
return GraphDef.parseFrom(graph.toGraphDef());
} catch (InvalidProtocolBufferException e) {
throw Util.throwException(e);
}
}
@Nonnull
@Override
public List getInputNodes() {
return Arrays.asList("input");
}
@Nonnull
@Override
public String getOutputNode() {
return "output";
}
public long getRadius() {
return radius;
}
public void setRadius(long radius) {
this.radius = radius;
}
@Nullable
@Override
public String getSummaryOut() {
return null;
}
public boolean isSingleBatch() {
return false;
}
@Nonnull
@SuppressWarnings("unused")
public static LRNLayer fromJson(@Nonnull final JsonObject json, Map rs) {
return new LRNLayer(json, rs);
}
@Override
public JsonObject getJson(Map resources, @Nonnull DataSerializer dataSerializer) {
JsonObject json = super.getJson(resources, dataSerializer);
long width = getRadius() * 2 + 1;
assert json != null;
json.addProperty("width", width);
json.addProperty("alpha", getAlpha() * (double) width);
json.addProperty("beta", getBeta());
json.addProperty("k", getBias());
return json;
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
LRNLayer addRef() {
return (LRNLayer) super.addRef();
}
@Override
protected boolean floatInputs() {
return true;
}
@Nonnull
@Override
protected Set getDataKeys(JsonObject json) {
return new HashSet<>();
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy