
com.simiacryptus.mindseye.test.unit.PerformanceTester Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-test Show documentation
Show all versions of mindseye-test Show documentation
Testing Tools for Neural Network Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.test.unit;
import com.simiacryptus.lang.Tuple2;
import com.simiacryptus.mindseye.lang.*;
import com.simiacryptus.mindseye.network.DAGNetwork;
import com.simiacryptus.mindseye.test.TestUtil;
import com.simiacryptus.mindseye.test.ToleranceStatistics;
import com.simiacryptus.notebook.NotebookOutput;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.*;
import com.simiacryptus.util.data.DoubleStatistics;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
import java.util.UUID;
import java.util.function.IntFunction;
/**
* The type Performance tester.
*/
public class PerformanceTester extends ComponentTestBase {
/**
* The Log.
*/
static final Logger log = LoggerFactory.getLogger(PerformanceTester.class);
private int batches = 100;
private int samples = 5;
private boolean testEvaluation = true;
private boolean testLearning = true;
/**
* Instantiates a new Performance tester.
*/
public PerformanceTester() {
}
/**
* Gets batches.
*
* @return the batches
*/
public int getBatches() {
return batches;
}
/**
* Sets batches.
*
* @param batches the batches
*/
public void setBatches(int batches) {
this.batches = batches;
}
/**
* Gets samples.
*
* @return the samples
*/
public int getSamples() {
return samples;
}
/**
* Sets samples.
*
* @param samples the samples
*/
public void setSamples(int samples) {
this.samples = samples;
}
/**
* Is test evaluation boolean.
*
* @return the boolean
*/
public boolean isTestEvaluation() {
return testEvaluation;
}
/**
* Sets test evaluation.
*
* @param testEvaluation the test evaluation
*/
public void setTestEvaluation(final boolean testEvaluation) {
this.testEvaluation = testEvaluation;
}
/**
* Is test learning boolean.
*
* @return the boolean
*/
public boolean isTestLearning() {
return testLearning;
}
/**
* Sets test learning.
*
* @param testLearning the test learning
*/
public void setTestLearning(final boolean testLearning) {
this.testLearning = testLearning;
}
/**
* Test.
*
* @param component the component
* @param inputPrototype the input prototype
*/
public void test(@Nonnull final Layer component, @Nonnull final Tensor[] inputPrototype) {
log.info(RefString.format("%s batch length, %s trials", batches, samples));
log.info("Input Dimensions:");
RefArrays.stream(RefUtil.addRef(inputPrototype)).map(t -> {
String temp_10_0001 = "\t" + RefArrays.toString(t.getDimensions());
t.freeRef();
return temp_10_0001;
}).forEach(x1 -> System.out.println(x1));
log.info("Performance:");
RefList> performance = RefIntStream.range(0, samples)
.mapToObj(RefUtil.wrapInterface((IntFunction extends Tuple2>) i -> {
return testPerformance(component.addRef(), RefUtil.addRef(inputPrototype));
}, component, inputPrototype)).collect(RefCollectors.toList());
if (isTestEvaluation()) {
@Nonnull final DoubleStatistics statistics = new DoubleStatistics()
.accept(performance.stream().mapToDouble(x -> x._1).toArray());
log.info(RefString.format("\tEvaluation performance: %.6fs +- %.6fs [%.6fs - %.6fs]", statistics.getAverage(),
statistics.getStandardDeviation(), statistics.getMin(), statistics.getMax()));
}
if (isTestLearning()) {
@Nonnull final DoubleStatistics statistics = new DoubleStatistics()
.accept(performance.stream().mapToDouble(x -> x._2).toArray());
log.info(RefString.format("\tLearning performance: %.6fs +- %.6fs [%.6fs - %.6fs]", statistics.getAverage(),
statistics.getStandardDeviation(), statistics.getMin(), statistics.getMax()));
}
if (null != performance)
performance.freeRef();
}
@Nullable
@Override
public ToleranceStatistics test(@Nonnull final NotebookOutput log, final Layer component,
@Nonnull final Tensor... inputPrototype) {
log.h1("Performance");
if (component instanceof DAGNetwork) {
TestUtil.instrumentPerformance(((DAGNetwork) component).addRef());
}
log.p("Now we execute larger-scale runs to benchmark performance:");
log.run(RefUtil.wrapInterface(() -> {
test(component == null ? null : component.addRef(), RefUtil.addRef(inputPrototype));
}, inputPrototype, component == null ? null : component.addRef()));
if (component instanceof DAGNetwork) {
TestUtil.extractPerformance(log, (DAGNetwork) component);
} else if (null != component) component.freeRef();
return null;
}
@Nonnull
@Override
public String toString() {
return "PerformanceTester{" + "batches=" + batches + ", samples=" + samples + ", testEvaluation=" + testEvaluation
+ ", testLearning=" + testLearning + '}';
}
public @SuppressWarnings("unused")
void _free() {
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
PerformanceTester addRef() {
return (PerformanceTester) super.addRef();
}
/**
* Test performance tuple 2.
*
* @param component the component
* @param inputPrototype the input prototype
* @return the tuple 2
*/
@Nonnull
protected Tuple2 testPerformance(@Nonnull final Layer component, @Nullable final Tensor... inputPrototype) {
final Tensor[][] data = new Tensor[batches][];
for (int i = 0; i < batches; i++) {
RefUtil.set(data, i, RefUtil.addRef(inputPrototype));
}
RefUtil.freeRef(inputPrototype);
long startTime = System.nanoTime();
final Result result = eval(component, ConstantResult.batchResultArray(data));
long timeNanos = System.nanoTime() - startTime;
startTime = System.nanoTime();
TensorList resultData = result.getData();
try {
result.accumulate(new DeltaSet(), new TensorArray(resultData.stream().map(x -> {
try {
return x.map(v -> 1.0);
} finally {
x.freeRef();
}
}).toArray(Tensor[]::new)));
} finally {
resultData.freeRef();
result.freeRef();
}
long timedBackprop = System.nanoTime() - startTime;
return new Tuple2<>(timeNanos / 1e9, timedBackprop / 1e9);
}
private Result eval(@Nonnull Layer component, Result[] input) {
try {
return component.eval(input);
} finally {
component.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy