
com.simiacryptus.mindseye.test.unit.ReferenceIO Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mindseye-test Show documentation
Show all versions of mindseye-test Show documentation
Testing Tools for Neural Network Components
The newest version!
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.mindseye.test.unit;
import com.simiacryptus.mindseye.lang.Layer;
import com.simiacryptus.mindseye.lang.Tensor;
import com.simiacryptus.mindseye.test.SimpleEval;
import com.simiacryptus.mindseye.test.ToleranceStatistics;
import com.simiacryptus.notebook.NotebookOutput;
import com.simiacryptus.ref.lang.RefUtil;
import com.simiacryptus.ref.wrappers.RefArrays;
import com.simiacryptus.ref.wrappers.RefHashMap;
import com.simiacryptus.ref.wrappers.RefString;
import com.simiacryptus.util.data.DoubleStatistics;
import org.jetbrains.annotations.NotNull;
import javax.annotation.Nonnull;
import javax.annotation.Nullable;
/**
* The type Reference io.
*/
public class ReferenceIO extends ComponentTestBase {
/**
* The Reference io.
*/
@Nullable
final RefHashMap referenceIO;
/**
* Instantiates a new Reference io.
*
* @param referenceIO the reference io
*/
public ReferenceIO(@Nullable final RefHashMap referenceIO) {
this.referenceIO = referenceIO;
}
@Nullable
@Override
public ToleranceStatistics test(@Nonnull final NotebookOutput log, @Nonnull final Layer layer,
@Nonnull final Tensor... inputPrototype) {
assert referenceIO != null;
if (!referenceIO.isEmpty()) {
log.h1("Reference Input/Output Pairs");
log.p("Display pre-setBytes input/output example pairs:");
referenceIO.forEach(RefUtil.wrapInterface((input, output) -> {
@Nonnull final SimpleEval evalObj = log.eval(() -> {
@Nonnull final SimpleEval eval = SimpleEval.run(layer.addRef(), RefUtil.addRef(input));
System.out.println(toString(RefUtil.addRef(input), RefUtil.addRef(output), eval.addRef()));
return eval;
});
verifyNonZero(evalObj);
RefUtil.freeRef(input);
RefUtil.freeRef(output);
}));
} else {
log.h1("Example Input/Output Pair");
log.p("Display input/output pairs from random executions:");
@Nonnull final SimpleEval evalObj = log.eval(() -> {
@Nonnull final SimpleEval eval = SimpleEval.run(layer.addRef(), RefUtil.addRef(inputPrototype));
System.out.println(toString(RefUtil.addRef(inputPrototype), eval.addRef()));
return eval;
});
verifyNonZero(evalObj);
}
layer.freeRef();
RefUtil.freeRef(inputPrototype);
return null;
}
@Nonnull
@Override
public String toString() {
return "ReferenceIO{" + "referenceIO=" + referenceIO + '}';
}
public void _free() {
if (null != referenceIO)
referenceIO.freeRef();
super._free();
}
@Nonnull
public @Override
@SuppressWarnings("unused")
ReferenceIO addRef() {
return (ReferenceIO) super.addRef();
}
private void verifyNonZero(SimpleEval eval) {
Tensor output = eval.getOutput();
double rms = output.rms();
output.freeRef();
eval.freeRef();
if (rms == 0) {
throw new AssertionError();
}
}
@NotNull
private String toString(@Nonnull Tensor[] input, SimpleEval eval) {
Tensor evalOutput = eval.getOutput();
try {
return RefString.format(
"--------------------\nInput: \n[%s]\n--------------------\nOutput: \n%s\n%s\n--------------------\nDerivative: \n%s",
RefArrays.stream(input).map(t -> {
String temp_05_0006 = t.prettyPrint();
t.freeRef();
return temp_05_0006;
}).reduce((a, b) -> a + ",\n" + b).orElse(""), RefArrays.toString(evalOutput.getDimensions()),
evalOutput.prettyPrint(), RefArrays.stream(eval.getDerivative()).map(t -> {
String temp_05_0007 = t.prettyPrint();
t.freeRef();
return temp_05_0007;
}).reduce((a, b) -> a + ",\n" + b).orElse(""));
} finally {
if (null != evalOutput) evalOutput.freeRef();
eval.freeRef();
}
}
@NotNull
private String toString(Tensor[] input, Tensor output, SimpleEval eval) {
Tensor evalOutput = eval.getOutput();
Tensor difference = evalOutput == null ? null : Tensor.add(output.scale(-1), evalOutput.addRef());
output.freeRef();
@Nonnull final DoubleStatistics error = difference.getDoubleStatistics();
difference.freeRef();
try {
return RefString.format(
"--------------------\nInput: \n[%s]\n--------------------\nOutput: \n%s\n%s\nError: %s\n--------------------\nDerivative: \n%s",
RefUtil.get(RefArrays.stream(input).map(t -> {
String s = RefArrays.toString(t.getDimensions()) + "\n" + t.prettyPrint();
t.freeRef();
return s;
}).reduce((a, b) -> a + ",\n" + b)), RefArrays.toString(evalOutput.getDimensions()),
evalOutput.prettyPrint(), error, RefUtil.get(RefArrays.stream(eval.getDerivative()).map(t -> {
String s = t.prettyPrint();
t.freeRef();
return s;
}).reduce((a, b) -> a + ",\n" + b)));
} finally {
RefUtil.freeRef(eval);
evalOutput.freeRef();
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy