com.simiacryptus.text.MinEntropyWrapper Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tf-gpt-2 Show documentation
Show all versions of tf-gpt-2 Show documentation
GPT-2 Text Prediction via Tensorflow Java API
/*
* Copyright (c) 2019 by Andrew Charneski.
*
* The author licenses this file to you under the
* Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance
* with the License. You may obtain a copy
* of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package com.simiacryptus.text;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.stream.DoubleStream;
import java.util.stream.IntStream;
public class MinEntropyWrapper extends ModelWrapper {
protected static final Logger logger = LoggerFactory.getLogger(MinEntropyWrapper.class);
private final ArrayList entropyHistory = new ArrayList<>();
private double value;
public MinEntropyWrapper(double value, LanguageCodeModel child) {
super(child);
this.value = value;
}
public static double entropy(float[] floats) {
return IntStream.range(0, floats.length).mapToDouble(i -> {
float p = floats[i];
return p <= 0 ? 0 : -p * Math.log(p);
}).sum() / Math.log(2);
}
public static float[] powCopy(float[] floats, double value) {
float[] copy = Arrays.copyOf(floats, floats.length);
pow(copy, value);
return copy;
}
public static void pow(float[] floats, double value) {
for (int i = 0; i < floats.length; i++) {
floats[i] = (float) Math.pow(floats[i], value);
}
}
@Override
public float[] eval(int data_X) {
LanguageCodeModel child = children[0];
float[] floats = child.eval(data_X);
double entropy = entropy(floats);
entropyHistory.add(entropy);
double[] schedule = DoubleStream.iterate(1.0, x -> x * 0.9).limit(1000).toArray();
for (int i = 0; i < schedule.length; i++) {
float[] copy = powCopy(floats, schedule[i]);
SumModel.normalize(copy);
if (entropy(copy) > value) {
floats = copy;
break;
}
}
logger.debug(String.format("Entropy = %s => %s", entropy, entropy(floats)));
//SumModel.normalize(floats);
return floats;
}
public double getValue() {
return value;
}
public void setValue(double value) {
this.value = value;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy