sttp.tapir.macros.SchemaMacros.scala Maven / Gradle / Ivy
package sttp.tapir.macros
import sttp.tapir.{Schema, SchemaAnnotations, SchemaType, Validator}
import sttp.tapir.generic.Configuration
import sttp.tapir.Schema.SName
import sttp.tapir.generic.auto.SchemaMagnoliaDerivation
import scala.quoted.*
trait SchemaMacros[T] { this: Schema[T] =>
/** Modifies nested schemas for case classes and case class families (sealed traits / enums), accessible with `path`, using the given
* `modification` function. To traverse collections, use `.each`.
*
* Should only be used if the schema hasn't been created by `.map`ping another one. In such a case, the shape of the schema doesn't
* correspond to the type `T`, but to some lower-level representation of the type.
*
* If the shape of the schema doesn't correspond to the path, the schema remains unchanged.
*/
inline def modify[U](inline path: T => U)(inline modification: Schema[U] => Schema[U]): Schema[T] = ${
SchemaMacros.modifyImpl[T, U]('this)('path)('modification)
}
}
private[tapir] object SchemaMacros {
private val ShapeInfo = "Path must have shape: _.field1.field2.each.field3.(...)"
def modifyImpl[T: Type, U: Type](
base: Expr[Schema[T]]
)(path: Expr[T => U])(modification: Expr[Schema[U] => Schema[U]])(using Quotes): Expr[Schema[T]] = {
import quotes.reflect.*
enum PathElement {
case TermPathElement(term: String, xargs: String*) extends PathElement
case FunctorPathElement(functor: String, method: String, xargs: String*) extends PathElement
}
def toPath(tree: Tree, acc: List[PathElement]): Seq[PathElement] = {
def typeSupported(modifyType: String) =
Seq("ModifyEach", "ModifyEither", "ModifyEachMap")
.exists(modifyType.endsWith)
tree match {
/** Field access */
case Select(deep, ident) =>
toPath(deep, PathElement.TermPathElement(ident) :: acc)
/** Method call with no arguments and using clause */
case Apply(Apply(TypeApply(Ident(f), _), idents), _) if typeSupported(f) => {
val newAcc = acc match {
/** replace the term controlled by quicklens */
case PathElement.TermPathElement(term, xargs @ _*) :: rest => PathElement.FunctorPathElement(f, term, xargs: _*) :: rest
case elements => report.errorAndAbort(s"Invalid use of path elements [${elements.mkString(", ")}]. $ShapeInfo, got: ${tree}")
}
idents.flatMap(toPath(_, newAcc))
}
/** The first segment from path (e.g. `_.age` -> `_`) */
case i: Ident =>
acc
case t =>
report.errorAndAbort(s"Unsupported path element $t")
}
}
val pathElements = path.asTerm match {
/** Single inlined path */
case Inlined(_, _, Block(List(DefDef(_, _, _, Some(p))), _)) =>
toPath(p, List.empty)
case _ =>
report.errorAndAbort(s"Unsupported path [$path]")
}
'{
val pathValue = ${
Expr(pathElements.map {
case PathElement.TermPathElement(c) => c
case PathElement.FunctorPathElement(_, method, _ @_*) => method
})
}
$base.modifyUnsafe(pathValue: _*)($modification)
}
}
}
trait SchemaCompanionMacros extends SchemaMagnoliaDerivation {
implicit inline def schemaForMap[V: Schema]: Schema[Map[String, V]] = ${
SchemaCompanionMacros.generateSchemaForMap[String, V]('{ summon[Schema[V]] }, 'identity)
}
/** Create a schema for a map with arbitrary keys. The schema for the keys (`Schema[K]`) should be a string (that is, the schema type
* should be [[sttp.tapir.SchemaType.SString]]), however this cannot be verified at compile-time and is not verified at run-time.
*
* The given `keyToString` conversion function is used during validation.
*
* If you'd like this schema to be available as an implicit for a given type of keys, create an custom implicit, e.g.:
*
* {{{
* case class MyKey(value: String) extends AnyVal
* implicit val schemaForMyMap = Schema.schemaForMap[MyKey, MyValue](_.value)
* }}}
*/
inline def schemaForMap[K, V: Schema](keyToString: K => String): Schema[Map[K, V]] = ${
SchemaCompanionMacros.generateSchemaForMap[K, V]('{ summon[Schema[V]] }, 'keyToString)
}
/** Create a coproduct schema (e.g. for a `sealed trait`), where the value of the discriminator between child types is a read of a field
* of the base type. The field, if not yet present, is added to each child schema.
*
* The schemas of the child types have to be provided explicitly with their value mappings in `mapping`.
*
* Note that if the discriminator value is some transformation of the child's type name (obtained using the implicit [[Configuration]]),
* the coproduct schema can be derived automatically or semi-automatically.
*
* @param discriminatorSchema
* The schema that is used when adding the discriminator as a field to child schemas (if it's not yet in the schema).
*/
inline def oneOfUsingField[E, V](inline extractor: E => V, asString: V => String)(
mapping: (V, Schema[_])*
)(implicit conf: Configuration, discriminatorSchema: Schema[V]): Schema[E] = ${
SchemaCompanionMacros.generateOneOfUsingField[E, V]('extractor, 'asString)('mapping)('conf, 'discriminatorSchema)
}
/** Create a coproduct schema for an `enum`, `sealed trait` or `sealed abstract class`, where to discriminate between child types a
* wrapper product is used. The name of the sole field in this product corresponds to the type's name, transformed using the implicit
* [[Configuration]].
*
* See also [[Schema.wrapWithSingleFieldProduct]], which creates the wrapper product given a schema.
*/
inline def oneOfWrapped[E](implicit conf: Configuration): Schema[E] = ${ SchemaCompanionMacros.generateOneOfWrapped[E]('conf) }
/** Derives the schema for a union type `E`. Schemas for all components of the union type must be available in the implicit scope at the
* point of invocation.
*/
inline def derivedUnion[E]: Schema[E] = ${ SchemaCompanionMacros.derivedUnion[E] }
/** Create a schema for an [[Enumeration]], where the validator is created using the enumeration's values. The low-level representation of
* the enum is a `String`, and the enum values in the documentation will be encoded using `.toString`.
*/
implicit inline def derivedEnumerationValue[T <: Enumeration#Value]: Schema[T] =
derivedEnumerationValueCustomise[T].defaultStringBased
/** Creates a schema for an [[Enumeration]], where the validator is created using the enumeration's values. Unlike the default
* [[derivedEnumerationValue]] method, which provides the schema implicitly, this variant allows customising how the schema is created.
* This is useful if the low-level representation of the schema is different than a `String`, or if the enumeration's values should be
* encoded in a different way than using `.toString`.
*
* Because of technical limitations of macros, the customisation arguments can't be given here directly, instead being delegated to
* [[CreateDerivedEnumerationSchema]].
*/
inline def derivedEnumerationValueCustomise[T <: scala.Enumeration#Value]: CreateDerivedEnumerationSchema[T] =
new CreateDerivedEnumerationSchema(derivedEnumerationValueValidator[T], SchemaAnnotations.derived[T])
private inline def derivedEnumerationValueValidator[T <: Enumeration#Value]: Validator.Enumeration[T] = ${
SchemaCompanionMacros.derivedEnumerationValueValidator[T]
}
/** Creates a schema for an enumeration, where the validator is derived using [[sttp.tapir.Validator.derivedEnumeration]]. This requires
* that this is an `enum`, where all cases are parameterless, or that all subtypes of the sealed hierarchy `T` are `object`s.
*
* This method cannot be implicit, as there's no way to constraint the type `T` to be an enum / sealed trait or class enumeration, so
* that this would be invoked only when necessary.
*/
inline def derivedEnumeration[T]: CreateDerivedEnumerationSchema[T] =
new CreateDerivedEnumerationSchema(Validator.derivedEnumeration[T], SchemaAnnotations.derived[T])
}
private[tapir] object SchemaCompanionMacros {
import sttp.tapir.SchemaType.*
import sttp.tapir.internal.SNameMacros
def generateSchemaForMap[K: Type, V: Type](schemaForV: Expr[Schema[V]], keyToString: Expr[K => String])(using
q: Quotes
): Expr[Schema[Map[K, V]]] = {
import quotes.reflect.*
val ktpe = TypeRepr.of[K]
val ktpeName = SNameMacros.typeFullNameFromTpe(ktpe)
val vtpe = TypeRepr.of[V]
val genericTypeParameters = (if (ktpeName.split('.').lastOption.contains("String")) Nil else List(ktpeName)) ++
SNameMacros.extractTypeArguments(ktpe) ++ List(SNameMacros.typeFullNameFromTpe(vtpe)) ++
SNameMacros.extractTypeArguments(vtpe)
'{
Schema(
SOpenProduct[Map[K, V], V](Nil, ${ schemaForV })(_.map { case (k, v) => ($keyToString(k), v) }),
Some(Schema.SName("Map", ${ Expr(genericTypeParameters) }))
)
}
}
def generateOneOfUsingField[E: Type, V: Type](extractor: Expr[E => V], asString: Expr[V => String])(
mapping: Expr[Seq[(V, Schema[_])]]
)(conf: Expr[Configuration], discriminatorSchema: Expr[Schema[V]])(using q: Quotes): Expr[Schema[E]] = {
import q.reflect.*
def resolveFunctionName(f: Statement): String = f match {
case Inlined(_, _, block) => resolveFunctionName(block)
case Block(List(), block) => resolveFunctionName(block)
case Block(List(defdef), _) => resolveFunctionName(defdef)
case DefDef(_, _, _, Some(body)) => resolveFunctionName(body)
case Apply(fun, _) => resolveFunctionName(fun)
case Ident(str) => str
case Select(_, kind) => kind
}
val tpe = TypeRepr.of[E]
val functionName = resolveFunctionName(extractor.asTerm)
val typeParams = SNameMacros.extractTypeArguments(tpe)
'{
import _root_.sttp.tapir.internal._
import _root_.sttp.tapir.Schema
import _root_.sttp.tapir.Schema._
import _root_.sttp.tapir.SchemaType._
val mappingAsList = $mapping.toList
val mappingAsMap = mappingAsList.toMap
val discriminatorName = _root_.sttp.tapir.FieldName(${ Expr(functionName) }, $conf.toEncodedName(${ Expr(functionName) }))
val discriminatorMapping = mappingAsMap.collect { case (k, sf @ Schema(_, Some(fname), _, _, _, _, _, _, _, _, _)) =>
$asString.apply(k) -> SRef(fname)
}
val sname = SName(SNameMacros.typeFullName[E], ${ Expr(typeParams) })
val subtypes = mappingAsList.map(_._2)
Schema(
(SCoproduct[E](subtypes, None) { e =>
val ee = $extractor(e)
mappingAsMap.get(ee).map(s => SchemaWithValue(s.asInstanceOf[Schema[Any]], e))
}).addDiscriminatorField(
discriminatorName,
$discriminatorSchema,
discriminatorMapping
),
Some(sname)
)
}
}
def generateOneOfWrapped[E: Type](conf: Expr[Configuration])(using q: Quotes): Expr[Schema[E]] = {
import q.reflect.*
val tpe = TypeRepr.of[E]
val symbol = tpe.typeSymbol
val typeParams = SNameMacros.extractTypeArguments(tpe)
if (!symbol.isClassDef || !(symbol.flags is Flags.Sealed)) {
report.errorAndAbort("Can only generate a coproduct schema for an enum, sealed trait or class.")
} else {
val children = symbol.children.toList.sortBy(_.name)
val childSchemas: List[Expr[(String, Schema[_])]] = children.map(child =>
if child.isClassDef
then // this can be a type (enum case with params / case class with params), or a parameterless enum case / case object
TypeIdent(child).tpe.asType match {
case '[f] => {
Expr.summon[Schema[f]] match {
case Some(subSchema) => '{ ${ Expr(child.name) } -> Schema.wrapWithSingleFieldProduct(${ subSchema })($conf) }
case None => {
val typeName = TypeRepr.of[f].typeSymbol.name
report.errorAndAbort(s"Cannot summon schema for `${typeName}`. Make sure schema derivation is properly configured.")
}
}
}
}
else '{ ${ Expr(child.name) } -> Schema(SchemaType.SProduct[E](Nil), name = Some(Schema.SName(${ Expr(child.name) }))) }
)
def subtypeSchema(e: Expr[E], map: Expr[Map[String, Schema[_]]]) = {
val eIdent = e.asTerm match {
case Inlined(_, _, ei: Ident) => ei
case ei: Ident => ei
}
val t = Match(
eIdent,
children.map { child =>
val caseThen = Block(Nil, '{ Some(SchemaWithValue($map(${ Expr(child.name) }).asInstanceOf[Schema[Any]], $e)) }.asTerm)
if child.isClassDef then CaseDef(Typed(Wildcard(), TypeIdent(child)), None, caseThen)
else CaseDef(Ident(child.termRef), None, caseThen)
}
)
t.asExprOf[Option[SchemaWithValue[_]]]
}
'{
import _root_.sttp.tapir.internal._
import _root_.sttp.tapir.Schema
import _root_.sttp.tapir.Schema._
import _root_.sttp.tapir.SchemaType._
import _root_.scala.collection.immutable.{List, Map}
val subclassNameToSchema: List[(String, Schema[_])] = List(${ Varargs(childSchemas) }: _*)
val subclassNameToSchemaMap: Map[String, Schema[_]] = subclassNameToSchema.toMap
val sname = SName(SNameMacros.typeFullName[E], ${ Expr(typeParams) })
Schema(
schemaType = SCoproduct[E](subclassNameToSchema.map(_._2), None) { e =>
${ subtypeSchema('e, 'subclassNameToSchemaMap) }
},
name = Some(sname)
)
}
}
}
def derivedEnumerationValueValidator[T: Type](using q: Quotes): Expr[Validator.Enumeration[T]] = {
import q.reflect.*
val tpe = TypeRepr.of[T]
if (tpe <:< TypeRepr.of[Enumeration#Value]) {
val enumerationPath = tpe.show.split("\\.").dropRight(1).mkString(".")
val enumeration = Symbol.requiredModule(enumerationPath)
val sName = '{
Some(Schema.SName(${
Expr(enumerationPath)
}))
}
'{
Validator.enumeration(
${ Ref(enumeration).asExprOf[scala.Enumeration] }.values.toList.asInstanceOf[List[T]],
v => Option(v),
$sName
)
}
} else {
report.errorAndAbort(s"Can only derive Schema for values owned by scala.Enumeration")
}
}
def derivedUnion[T: Type](using q: Quotes): Expr[Schema[T]] = {
import q.reflect.*
val tpe = TypeRepr.of[T]
def typeParams = SNameMacros.extractTypeArguments(tpe)
// first, finding all of the components of the union type
def findOrTypes(t: TypeRepr, failIfNotOrType: Boolean = true): List[TypeRepr] =
t.dealias match {
// only failing if the top-level type is not an OrType
case OrType(l, r) => findOrTypes(l, failIfNotOrType = false) ++ findOrTypes(r, failIfNotOrType = false)
case _ if failIfNotOrType =>
report.errorAndAbort(s"Can only derive Schemas for union types, got: ${tpe.show}")
case _ => List(t)
}
val orTypes = findOrTypes(tpe)
// then, looking up schemas for each of the components
val schemas: List[Expr[Schema[_]]] = orTypes.map { orType =>
orType.asType match {
case '[f] =>
Expr.summon[Schema[f]] match {
case Some(subSchema) => subSchema
case None =>
val typeName = TypeRepr.of[f].show
report.errorAndAbort(s"Cannot summon schema for `$typeName`. Make sure schema derivation is properly configured.")
}
}
}
// then, constructing the name of the schema; if the type is not named, we generate a name by hand by concatenating
// names of the components
val orTypesNames = Expr.ofList(orTypes.map { orType =>
orType.asType match {
case '[f] =>
val typeParams = SNameMacros.extractTypeArguments(orType)
'{ _root_.sttp.tapir.Schema.SName(SNameMacros.typeFullName[f], ${ Expr(typeParams) }) }
}
})
val baseName = SNameMacros.typeFullNameFromTpe(tpe)
val snameExpr = if baseName.isEmpty then '{ SName(${ orTypesNames }.map(_.show).mkString("_or_")) }
else '{ SName(${ Expr(baseName) }, ${ Expr(typeParams) }) }
// then, generating the method which maps a specific value to a schema, trying to match to one of the components
val typesAndSchemas = orTypes.zip(schemas) // both lists have the same length
def subtypeSchema(e: Expr[T]) = {
val eIdent = e.asTerm match {
case Inlined(_, _, ei: Ident) => ei
case ei: Ident => ei
}
// if an or-type component that is generic appears more than once, we won't be able to perform a runtime check,
// to get the correct schema; in such case, instead of generating a `case ...`, we add a (single!)
// `case _ => None` to the match
val genericTypesThatAppearMoreThanOnce = {
var seen = Set[String]()
var result = Set[String]()
orTypes.foreach { orType =>
orType.classSymbol match {
case Some(sym) if orType.typeArgs.nonEmpty => // is generic
if seen.contains(sym.fullName) then result = result + sym.fullName
else seen = seen + sym.fullName
case _ => // skip
}
}
result
}
val baseCases = typesAndSchemas.flatMap { (orType, orTypeSchema) =>
def caseThen = Block(Nil, '{ Some(SchemaWithValue($orTypeSchema.asInstanceOf[Schema[Any]], $e)) }.asTerm)
orType.classSymbol match
case None => Some(CaseDef(Ident(orType.termSymbol.termRef), None, caseThen))
case Some(sym) if orType.typeArgs.nonEmpty =>
if genericTypesThatAppearMoreThanOnce.contains(sym.fullName) then None
else
val wildcardTypeParameters: List[Tree] =
List.fill(orType.typeArgs.length)(TypeBoundsTree(TypeTree.of[Nothing], TypeTree.of[Any]))
Some(CaseDef(Typed(Wildcard(), Applied(TypeIdent(sym), wildcardTypeParameters)), None, caseThen))
case Some(sym) => Some(CaseDef(Typed(Wildcard(), TypeIdent(sym)), None, caseThen))
}
val cases =
if genericTypesThatAppearMoreThanOnce.nonEmpty
then baseCases :+ CaseDef(Wildcard(), None, Block(Nil, '{ None }.asTerm))
else baseCases
val t = Match(eIdent, cases)
t.asExprOf[Option[SchemaWithValue[_]]]
}
// finally, generating code which creates the SCoproduct
'{
import _root_.sttp.tapir.Schema
import _root_.sttp.tapir.Schema._
import _root_.sttp.tapir.SchemaType._
import _root_.scala.collection.immutable.List
val childSchemas = List(${ Varargs(schemas) }: _*)
val sname = $snameExpr
Schema(
schemaType = SCoproduct[T](childSchemas, None) { e => ${ subtypeSchema('{ e }) } },
name = Some(sname)
)
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy