All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.spotify.scio.values.DoubleSCollectionFunctions.scala Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2019 Spotify AB.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

package com.spotify.scio.values

import com.spotify.scio.util.StatCounter

/** Extra functions available on SCollections of `Double`s through an implicit conversion. */
class DoubleSCollectionFunctions(self: SCollection[Double]) {

  /**
   * Return an SCollection with a single [[com.spotify.scio.util.StatCounter StatCounter]] object
   * that captures the mean, variance and count of the SCollection's elements in one operation.
   */
  def stats: SCollection[StatCounter] =
    self.combine(StatCounter(_))(_.merge(_))(_.merge(_))

  // Implemented in SCollection
  // def mean: SCollection[Double] = this.stats().map(_.mean)

  // Implemented in SCollection
  // def sum: SCollection[Double] = this.stats().map(_.sum)

  /** Compute the standard deviation of this SCollection's elements. */
  def stdev: SCollection[Double] = self.transform(_.stats.map(_.stdev))

  /** Compute the variance of this SCollection's elements. */
  def variance: SCollection[Double] = self.transform(_.stats.map(_.variance))

  /**
   * Compute the sample standard deviation of this SCollection's elements (which corrects for bias
   * in estimating the standard deviation by dividing by N-1 instead of N).
   */
  def sampleStdev: SCollection[Double] =
    self.transform(_.stats.map(_.sampleStdev))

  /**
   * Compute the sample variance of this SCollection's elements (which corrects for bias in
   * estimating the variance by dividing by N-1 instead of N).
   */
  def sampleVariance: SCollection[Double] =
    self.transform(_.stats.map(_.sampleVariance))

  // Ported from org.apache.spark.rdd.DoubleRDDFunctions

  /**
   * Compute a histogram of the data using `bucketCount` number of buckets evenly spaced between the
   * minimum and maximum of the SCollection. For example if the min value is 0 and the max is 100
   * and there are two buckets the resulting buckets will be `[0, 50)` `[50, 100]`. `bucketCount`
   * must be at least 1. If the SCollection contains infinity, NaN throws an exception. If the
   * elements in SCollection do not vary (max == min) always returns a single bucket.
   */
  def histogram(bucketCount: Int): (SCollection[Array[Double]], SCollection[Array[Long]]) = {
    // Compute the minimum and the maximum
    val minMax =
      self.aggregate((Double.PositiveInfinity, Double.NegativeInfinity))(
        (acc, x) => (x.min(acc._1), x.max(acc._2)),
        (l, r) => (l._1.min(r._1), l._2.max(r._2))
      )
    val buckets = minMax.map { case (min, max) =>
      if (min.isNaN || max.isNaN || max.isInfinity || min.isInfinity) {
        throw new UnsupportedOperationException(
          "Histogram on either an empty SCollection or SCollection containing +/-infinity or NaN"
        )
      }
      val range = if (min != max) {
        // Range.Double.inclusive(min, max, increment)
        // The above code doesn't always work. See Scala bug #SI-8782.
        // https://issues.scala-lang.org/browse/SI-8782
        val span = max - min
        val steps = bucketCount
        Range.Int(0, steps, 1).map(s => min + (s * span) / steps) :+ max
      } else {
        List(min, min)
      }
      range.toArray
    }
    (buckets, histogramImpl(buckets, true))
  }

  /**
   * Compute a histogram using the provided buckets. The buckets are all open to the right except
   * for the last which is closed e.g. for the array `[1, 10, 20, 50]` the buckets are `[1, 10) [10,
   * 20) [20, 50]` e.g `1<=x<10`, `10<=x<20`, `20<=x<=50`. And on the input of 1 and 50 we would
   * have a histogram of `[1, 0, 1]`.
   *
   * Note: if your histogram is evenly spaced (e.g. `[0, 10, 20, 30]`) this can be switched from an
   * O(log n) insertion to O(1) per element. (where n = # buckets) if you set `evenBuckets` to true.
   *
   * buckets must be sorted and not contain any duplicates. buckets array must be at least two
   * elements. All NaN entries are treated the same. If you have a NaN bucket it must be the maximum
   * value of the last position and all NaN entries will be counted in that bucket.
   */
  def histogram(buckets: Array[Double], evenBuckets: Boolean = false): SCollection[Array[Long]] =
    histogramImpl(self.context.parallelize(Seq(buckets)), evenBuckets)

  private def histogramImpl(
    buckets: SCollection[Array[Double]],
    evenBuckets: Boolean
  ): SCollection[Array[Long]] = {
    import com.spotify.scio.values.BucketFunctions._
    // Map buckets into a side input of bucket function
    val side = buckets.map { b =>
      require(b.length >= 2, "buckets array must have at least two elements")

      // Decide which bucket function to pass to histogramPartition. We decide here
      // rather than having a general function so that the decision need only be made
      // once rather than once per shard
      val bucketParams: Either[(Double, Double, Int), Array[Double]] = if (evenBuckets) {
        Left((b.head, b.last, b.length - 1))
      } else {
        Right(b)
      }
      bucketParams
    }.asSingletonSideInput

    val bucketSize = buckets.map(_.length - 1)
    val hist = self
      .withSideInputs(side)
      .flatMap { (x, c) =>
        // Map values to buckets
        val bucketFunction = c(side) match {
          case Left(p)  => (fastBucketFunction _).tupled(p)
          case Right(b) => basicBucketFunction(b) _
        }
        bucketFunction(x).iterator
      }
      .toSCollection
      .countByValue // Count occurrences of each bucket
      .cross(bucketSize) // Replicate bucket size
      .map { case ((bin, count), size) =>
        val b = Array.fill(size)(0L)
        b(bin) = count
        b
      }
      .reduce { (x, y) =>
        val r = x.clone()
        var i = 0
        while (i < x.length) {
          r(i) += y(i)
          i += 1
        }
        r
      }

    // Workaround since hist may be empty
    val bSide = bucketSize.asSingletonSideInput
    val hSide = hist.asListSideInput
    self.context
      .parallelize(Seq(0))
      .withSideInputs(bSide, hSide)
      .map { (_, c) =>
        val h = c(hSide)
        if (h.isEmpty) {
          Array.fill(c(bSide))(0L)
        } else {
          h.head
        }
      }
      .toSCollection
  }
}

private object BucketFunctions {
  // Basic bucket function. This works using Java's built in Array
  // binary search. Takes log(size(buckets))
  def basicBucketFunction(b: Array[Double])(e: Double): Option[Int] = {
    val location = java.util.Arrays.binarySearch(b, e)
    if (location < 0) {
      // If the location is less than 0 then the insertion point in the array
      // to keep it sorted is -location-1
      val insertionPoint = -location - 1
      // If we have to insert before the first element or after the last one
      // its out of bounds.
      // We do this rather than buckets.lengthCompare(insertionPoint)
      // because Array[Double] fails to override it (for now).
      if (insertionPoint > 0 && insertionPoint < b.length) {
        Some(insertionPoint - 1)
      } else {
        None
      }
    } else if (location < b.length - 1) {
      // Exact match, just insert here
      Some(location)
    } else {
      // Exact match to the last element
      Some(location - 1)
    }
  }

  // Determine the bucket function in constant time. Requires that buckets are evenly spaced
  def fastBucketFunction(min: Double, max: Double, count: Int)(e: Double): Option[Int] =
    // If our input is not a number unless the increment is also NaN then we fail fast
    if (e.isNaN || e < min || e > max) {
      None
    } else {
      // Compute ratio of e's distance along range to total range first, for better precision
      val bucketNumber = (((e - min) / (max - min)) * count).toInt
      // should be less than count, but will equal count if e == max, in which case
      // it's part of the last end-range-inclusive bucket, so return count-1
      Some(math.min(bucketNumber, count - 1))
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy