All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.metadata.v0.MultiDimensionalRegression Maven / Gradle / Ivy

There is a newer version: 0.6.0
Show newest version
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/problem_statement.proto

// Protobuf Java Version: 3.25.5
package org.tensorflow.metadata.v0;

/**
 * 
 * A multi-dimensional regression task.
 * Similar to OneDimensionalRegression, MultiDimensionalRegression predicts
 * continuous real numbers. However instead of predicting a single scalar value
 * per example, we predict a fixed dimensional vector of values. By default the
 * range is any float -inf to inf, but specific sub-types (e.g. probability)
 * define more narrow ranges.
 * 
* * Protobuf type {@code tensorflow.metadata.v0.MultiDimensionalRegression} */ public final class MultiDimensionalRegression extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.MultiDimensionalRegression) MultiDimensionalRegressionOrBuilder { private static final long serialVersionUID = 0L; // Use MultiDimensionalRegression.newBuilder() to construct. private MultiDimensionalRegression(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private MultiDimensionalRegression() { weight_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new MultiDimensionalRegression(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.MultiDimensionalRegression.class, org.tensorflow.metadata.v0.MultiDimensionalRegression.Builder.class); } public interface ProbabilityOrBuilder extends // @@protoc_insertion_point(interface_extends:tensorflow.metadata.v0.MultiDimensionalRegression.Probability) com.google.protobuf.MessageOrBuilder { /** *
     * By default, MultiDimensionalRegression assumes that each value in the
     *  predicted vector is independent. If predictions_sum_to_1 is true, this
     *  indicates that the vector of values represent mutually exclusive rather
     *  than independent probabilities (for example, the probabilities of
     *  classes in a multi-class scenario). When this is set to true, we use
     *  softmax instead of sigmoid in the loss function.
     * 
* * bool predictions_sum_to_1 = 1; * @return The predictionsSumTo1. */ boolean getPredictionsSumTo1(); } /** *
   * Defines a regression problem where labels are in [0, 1] and represent a
   * probability (e.g: probability of click).
   * 
* * Protobuf type {@code tensorflow.metadata.v0.MultiDimensionalRegression.Probability} */ public static final class Probability extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.MultiDimensionalRegression.Probability) ProbabilityOrBuilder { private static final long serialVersionUID = 0L; // Use Probability.newBuilder() to construct. private Probability(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Probability() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Probability(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_Probability_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_Probability_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.class, org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder.class); } public static final int PREDICTIONS_SUM_TO_1_FIELD_NUMBER = 1; private boolean predictionsSumTo1_ = false; /** *
     * By default, MultiDimensionalRegression assumes that each value in the
     *  predicted vector is independent. If predictions_sum_to_1 is true, this
     *  indicates that the vector of values represent mutually exclusive rather
     *  than independent probabilities (for example, the probabilities of
     *  classes in a multi-class scenario). When this is set to true, we use
     *  softmax instead of sigmoid in the loss function.
     * 
* * bool predictions_sum_to_1 = 1; * @return The predictionsSumTo1. */ @java.lang.Override public boolean getPredictionsSumTo1() { return predictionsSumTo1_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (predictionsSumTo1_ != false) { output.writeBool(1, predictionsSumTo1_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (predictionsSumTo1_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(1, predictionsSumTo1_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability)) { return super.equals(obj); } org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability other = (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) obj; if (getPredictionsSumTo1() != other.getPredictionsSumTo1()) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + PREDICTIONS_SUM_TO_1_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getPredictionsSumTo1()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
     * Defines a regression problem where labels are in [0, 1] and represent a
     * probability (e.g: probability of click).
     * 
* * Protobuf type {@code tensorflow.metadata.v0.MultiDimensionalRegression.Probability} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.MultiDimensionalRegression.Probability) org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_Probability_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_Probability_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.class, org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder.class); } // Construct using org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; predictionsSumTo1_ = false; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_Probability_descriptor; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability getDefaultInstanceForType() { return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability build() { org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability buildPartial() { org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability result = new org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { result.predictionsSumTo1_ = predictionsSumTo1_; } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) { return mergeFrom((org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability other) { if (other == org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance()) return this; if (other.getPredictionsSumTo1() != false) { setPredictionsSumTo1(other.getPredictionsSumTo1()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { predictionsSumTo1_ = input.readBool(); bitField0_ |= 0x00000001; break; } // case 8 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private boolean predictionsSumTo1_ ; /** *
       * By default, MultiDimensionalRegression assumes that each value in the
       *  predicted vector is independent. If predictions_sum_to_1 is true, this
       *  indicates that the vector of values represent mutually exclusive rather
       *  than independent probabilities (for example, the probabilities of
       *  classes in a multi-class scenario). When this is set to true, we use
       *  softmax instead of sigmoid in the loss function.
       * 
* * bool predictions_sum_to_1 = 1; * @return The predictionsSumTo1. */ @java.lang.Override public boolean getPredictionsSumTo1() { return predictionsSumTo1_; } /** *
       * By default, MultiDimensionalRegression assumes that each value in the
       *  predicted vector is independent. If predictions_sum_to_1 is true, this
       *  indicates that the vector of values represent mutually exclusive rather
       *  than independent probabilities (for example, the probabilities of
       *  classes in a multi-class scenario). When this is set to true, we use
       *  softmax instead of sigmoid in the loss function.
       * 
* * bool predictions_sum_to_1 = 1; * @param value The predictionsSumTo1 to set. * @return This builder for chaining. */ public Builder setPredictionsSumTo1(boolean value) { predictionsSumTo1_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
       * By default, MultiDimensionalRegression assumes that each value in the
       *  predicted vector is independent. If predictions_sum_to_1 is true, this
       *  indicates that the vector of values represent mutually exclusive rather
       *  than independent probabilities (for example, the probabilities of
       *  classes in a multi-class scenario). When this is set to true, we use
       *  softmax instead of sigmoid in the loss function.
       * 
* * bool predictions_sum_to_1 = 1; * @return This builder for chaining. */ public Builder clearPredictionsSumTo1() { bitField0_ = (bitField0_ & ~0x00000001); predictionsSumTo1_ = false; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.MultiDimensionalRegression.Probability) } // @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.MultiDimensionalRegression.Probability) private static final org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability(); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Probability parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private int labelIdCase_ = 0; @SuppressWarnings("serial") private java.lang.Object labelId_; public enum LabelIdCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { LABEL(1), LABEL_PATH(3), LABELID_NOT_SET(0); private final int value; private LabelIdCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static LabelIdCase valueOf(int value) { return forNumber(value); } public static LabelIdCase forNumber(int value) { switch (value) { case 1: return LABEL; case 3: return LABEL_PATH; case 0: return LABELID_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public LabelIdCase getLabelIdCase() { return LabelIdCase.forNumber( labelIdCase_); } private int labelTypeCase_ = 0; @SuppressWarnings("serial") private java.lang.Object labelType_; public enum LabelTypeCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { PROBABILITY(4), LABELTYPE_NOT_SET(0); private final int value; private LabelTypeCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static LabelTypeCase valueOf(int value) { return forNumber(value); } public static LabelTypeCase forNumber(int value) { switch (value) { case 4: return PROBABILITY; case 0: return LABELTYPE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public LabelTypeCase getLabelTypeCase() { return LabelTypeCase.forNumber( labelTypeCase_); } public static final int LABEL_FIELD_NUMBER = 1; /** *
   * The name of the label. Assumes the label is a flat, top-level field.
   * 
* * string label = 1; * @return Whether the label field is set. */ public boolean hasLabel() { return labelIdCase_ == 1; } /** *
   * The name of the label. Assumes the label is a flat, top-level field.
   * 
* * string label = 1; * @return The label. */ public java.lang.String getLabel() { java.lang.Object ref = ""; if (labelIdCase_ == 1) { ref = labelId_; } if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (labelIdCase_ == 1) { labelId_ = s; } return s; } } /** *
   * The name of the label. Assumes the label is a flat, top-level field.
   * 
* * string label = 1; * @return The bytes for label. */ public com.google.protobuf.ByteString getLabelBytes() { java.lang.Object ref = ""; if (labelIdCase_ == 1) { ref = labelId_; } if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); if (labelIdCase_ == 1) { labelId_ = b; } return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int LABEL_PATH_FIELD_NUMBER = 3; /** *
   * A path can be used instead of a flat string if the label is nested.
   * 
* * .tensorflow.metadata.v0.Path label_path = 3; * @return Whether the labelPath field is set. */ @java.lang.Override public boolean hasLabelPath() { return labelIdCase_ == 3; } /** *
   * A path can be used instead of a flat string if the label is nested.
   * 
* * .tensorflow.metadata.v0.Path label_path = 3; * @return The labelPath. */ @java.lang.Override public org.tensorflow.metadata.v0.Path getLabelPath() { if (labelIdCase_ == 3) { return (org.tensorflow.metadata.v0.Path) labelId_; } return org.tensorflow.metadata.v0.Path.getDefaultInstance(); } /** *
   * A path can be used instead of a flat string if the label is nested.
   * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ @java.lang.Override public org.tensorflow.metadata.v0.PathOrBuilder getLabelPathOrBuilder() { if (labelIdCase_ == 3) { return (org.tensorflow.metadata.v0.Path) labelId_; } return org.tensorflow.metadata.v0.Path.getDefaultInstance(); } public static final int WEIGHT_FIELD_NUMBER = 2; @SuppressWarnings("serial") private volatile java.lang.Object weight_ = ""; /** *
   * (optional) The weight column.
   * 
* * string weight = 2; * @return The weight. */ @java.lang.Override public java.lang.String getWeight() { java.lang.Object ref = weight_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); weight_ = s; return s; } } /** *
   * (optional) The weight column.
   * 
* * string weight = 2; * @return The bytes for weight. */ @java.lang.Override public com.google.protobuf.ByteString getWeightBytes() { java.lang.Object ref = weight_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); weight_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int PROBABILITY_FIELD_NUMBER = 4; /** *
   * When set means the label is a probability in range [0..1].
   * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; * @return Whether the probability field is set. */ @java.lang.Override public boolean hasProbability() { return labelTypeCase_ == 4; } /** *
   * When set means the label is a probability in range [0..1].
   * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; * @return The probability. */ @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability getProbability() { if (labelTypeCase_ == 4) { return (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_; } return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } /** *
   * When set means the label is a probability in range [0..1].
   * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder getProbabilityOrBuilder() { if (labelTypeCase_ == 4) { return (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_; } return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (labelIdCase_ == 1) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, labelId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weight_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, weight_); } if (labelIdCase_ == 3) { output.writeMessage(3, (org.tensorflow.metadata.v0.Path) labelId_); } if (labelTypeCase_ == 4) { output.writeMessage(4, (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (labelIdCase_ == 1) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, labelId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weight_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, weight_); } if (labelIdCase_ == 3) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(3, (org.tensorflow.metadata.v0.Path) labelId_); } if (labelTypeCase_ == 4) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.metadata.v0.MultiDimensionalRegression)) { return super.equals(obj); } org.tensorflow.metadata.v0.MultiDimensionalRegression other = (org.tensorflow.metadata.v0.MultiDimensionalRegression) obj; if (!getWeight() .equals(other.getWeight())) return false; if (!getLabelIdCase().equals(other.getLabelIdCase())) return false; switch (labelIdCase_) { case 1: if (!getLabel() .equals(other.getLabel())) return false; break; case 3: if (!getLabelPath() .equals(other.getLabelPath())) return false; break; case 0: default: } if (!getLabelTypeCase().equals(other.getLabelTypeCase())) return false; switch (labelTypeCase_) { case 4: if (!getProbability() .equals(other.getProbability())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + WEIGHT_FIELD_NUMBER; hash = (53 * hash) + getWeight().hashCode(); switch (labelIdCase_) { case 1: hash = (37 * hash) + LABEL_FIELD_NUMBER; hash = (53 * hash) + getLabel().hashCode(); break; case 3: hash = (37 * hash) + LABEL_PATH_FIELD_NUMBER; hash = (53 * hash) + getLabelPath().hashCode(); break; case 0: default: } switch (labelTypeCase_) { case 4: hash = (37 * hash) + PROBABILITY_FIELD_NUMBER; hash = (53 * hash) + getProbability().hashCode(); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.metadata.v0.MultiDimensionalRegression prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   * A multi-dimensional regression task.
   * Similar to OneDimensionalRegression, MultiDimensionalRegression predicts
   * continuous real numbers. However instead of predicting a single scalar value
   * per example, we predict a fixed dimensional vector of values. By default the
   * range is any float -inf to inf, but specific sub-types (e.g. probability)
   * define more narrow ranges.
   * 
* * Protobuf type {@code tensorflow.metadata.v0.MultiDimensionalRegression} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.MultiDimensionalRegression) org.tensorflow.metadata.v0.MultiDimensionalRegressionOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.MultiDimensionalRegression.class, org.tensorflow.metadata.v0.MultiDimensionalRegression.Builder.class); } // Construct using org.tensorflow.metadata.v0.MultiDimensionalRegression.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (labelPathBuilder_ != null) { labelPathBuilder_.clear(); } weight_ = ""; if (probabilityBuilder_ != null) { probabilityBuilder_.clear(); } labelIdCase_ = 0; labelId_ = null; labelTypeCase_ = 0; labelType_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_MultiDimensionalRegression_descriptor; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression getDefaultInstanceForType() { return org.tensorflow.metadata.v0.MultiDimensionalRegression.getDefaultInstance(); } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression build() { org.tensorflow.metadata.v0.MultiDimensionalRegression result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression buildPartial() { org.tensorflow.metadata.v0.MultiDimensionalRegression result = new org.tensorflow.metadata.v0.MultiDimensionalRegression(this); if (bitField0_ != 0) { buildPartial0(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartial0(org.tensorflow.metadata.v0.MultiDimensionalRegression result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000004) != 0)) { result.weight_ = weight_; } } private void buildPartialOneofs(org.tensorflow.metadata.v0.MultiDimensionalRegression result) { result.labelIdCase_ = labelIdCase_; result.labelId_ = this.labelId_; if (labelIdCase_ == 3 && labelPathBuilder_ != null) { result.labelId_ = labelPathBuilder_.build(); } result.labelTypeCase_ = labelTypeCase_; result.labelType_ = this.labelType_; if (labelTypeCase_ == 4 && probabilityBuilder_ != null) { result.labelType_ = probabilityBuilder_.build(); } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.metadata.v0.MultiDimensionalRegression) { return mergeFrom((org.tensorflow.metadata.v0.MultiDimensionalRegression)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.metadata.v0.MultiDimensionalRegression other) { if (other == org.tensorflow.metadata.v0.MultiDimensionalRegression.getDefaultInstance()) return this; if (!other.getWeight().isEmpty()) { weight_ = other.weight_; bitField0_ |= 0x00000004; onChanged(); } switch (other.getLabelIdCase()) { case LABEL: { labelIdCase_ = 1; labelId_ = other.labelId_; onChanged(); break; } case LABEL_PATH: { mergeLabelPath(other.getLabelPath()); break; } case LABELID_NOT_SET: { break; } } switch (other.getLabelTypeCase()) { case PROBABILITY: { mergeProbability(other.getProbability()); break; } case LABELTYPE_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { java.lang.String s = input.readStringRequireUtf8(); labelIdCase_ = 1; labelId_ = s; break; } // case 10 case 18: { weight_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000004; break; } // case 18 case 26: { input.readMessage( getLabelPathFieldBuilder().getBuilder(), extensionRegistry); labelIdCase_ = 3; break; } // case 26 case 34: { input.readMessage( getProbabilityFieldBuilder().getBuilder(), extensionRegistry); labelTypeCase_ = 4; break; } // case 34 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int labelIdCase_ = 0; private java.lang.Object labelId_; public LabelIdCase getLabelIdCase() { return LabelIdCase.forNumber( labelIdCase_); } public Builder clearLabelId() { labelIdCase_ = 0; labelId_ = null; onChanged(); return this; } private int labelTypeCase_ = 0; private java.lang.Object labelType_; public LabelTypeCase getLabelTypeCase() { return LabelTypeCase.forNumber( labelTypeCase_); } public Builder clearLabelType() { labelTypeCase_ = 0; labelType_ = null; onChanged(); return this; } private int bitField0_; /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @return Whether the label field is set. */ @java.lang.Override public boolean hasLabel() { return labelIdCase_ == 1; } /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @return The label. */ @java.lang.Override public java.lang.String getLabel() { java.lang.Object ref = ""; if (labelIdCase_ == 1) { ref = labelId_; } if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); if (labelIdCase_ == 1) { labelId_ = s; } return s; } else { return (java.lang.String) ref; } } /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @return The bytes for label. */ @java.lang.Override public com.google.protobuf.ByteString getLabelBytes() { java.lang.Object ref = ""; if (labelIdCase_ == 1) { ref = labelId_; } if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); if (labelIdCase_ == 1) { labelId_ = b; } return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @param value The label to set. * @return This builder for chaining. */ public Builder setLabel( java.lang.String value) { if (value == null) { throw new NullPointerException(); } labelIdCase_ = 1; labelId_ = value; onChanged(); return this; } /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @return This builder for chaining. */ public Builder clearLabel() { if (labelIdCase_ == 1) { labelIdCase_ = 0; labelId_ = null; onChanged(); } return this; } /** *
     * The name of the label. Assumes the label is a flat, top-level field.
     * 
* * string label = 1; * @param value The bytes for label to set. * @return This builder for chaining. */ public Builder setLabelBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); labelIdCase_ = 1; labelId_ = value; onChanged(); return this; } private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder> labelPathBuilder_; /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; * @return Whether the labelPath field is set. */ @java.lang.Override public boolean hasLabelPath() { return labelIdCase_ == 3; } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; * @return The labelPath. */ @java.lang.Override public org.tensorflow.metadata.v0.Path getLabelPath() { if (labelPathBuilder_ == null) { if (labelIdCase_ == 3) { return (org.tensorflow.metadata.v0.Path) labelId_; } return org.tensorflow.metadata.v0.Path.getDefaultInstance(); } else { if (labelIdCase_ == 3) { return labelPathBuilder_.getMessage(); } return org.tensorflow.metadata.v0.Path.getDefaultInstance(); } } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ public Builder setLabelPath(org.tensorflow.metadata.v0.Path value) { if (labelPathBuilder_ == null) { if (value == null) { throw new NullPointerException(); } labelId_ = value; onChanged(); } else { labelPathBuilder_.setMessage(value); } labelIdCase_ = 3; return this; } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ public Builder setLabelPath( org.tensorflow.metadata.v0.Path.Builder builderForValue) { if (labelPathBuilder_ == null) { labelId_ = builderForValue.build(); onChanged(); } else { labelPathBuilder_.setMessage(builderForValue.build()); } labelIdCase_ = 3; return this; } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ public Builder mergeLabelPath(org.tensorflow.metadata.v0.Path value) { if (labelPathBuilder_ == null) { if (labelIdCase_ == 3 && labelId_ != org.tensorflow.metadata.v0.Path.getDefaultInstance()) { labelId_ = org.tensorflow.metadata.v0.Path.newBuilder((org.tensorflow.metadata.v0.Path) labelId_) .mergeFrom(value).buildPartial(); } else { labelId_ = value; } onChanged(); } else { if (labelIdCase_ == 3) { labelPathBuilder_.mergeFrom(value); } else { labelPathBuilder_.setMessage(value); } } labelIdCase_ = 3; return this; } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ public Builder clearLabelPath() { if (labelPathBuilder_ == null) { if (labelIdCase_ == 3) { labelIdCase_ = 0; labelId_ = null; onChanged(); } } else { if (labelIdCase_ == 3) { labelIdCase_ = 0; labelId_ = null; } labelPathBuilder_.clear(); } return this; } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ public org.tensorflow.metadata.v0.Path.Builder getLabelPathBuilder() { return getLabelPathFieldBuilder().getBuilder(); } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ @java.lang.Override public org.tensorflow.metadata.v0.PathOrBuilder getLabelPathOrBuilder() { if ((labelIdCase_ == 3) && (labelPathBuilder_ != null)) { return labelPathBuilder_.getMessageOrBuilder(); } else { if (labelIdCase_ == 3) { return (org.tensorflow.metadata.v0.Path) labelId_; } return org.tensorflow.metadata.v0.Path.getDefaultInstance(); } } /** *
     * A path can be used instead of a flat string if the label is nested.
     * 
* * .tensorflow.metadata.v0.Path label_path = 3; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder> getLabelPathFieldBuilder() { if (labelPathBuilder_ == null) { if (!(labelIdCase_ == 3)) { labelId_ = org.tensorflow.metadata.v0.Path.getDefaultInstance(); } labelPathBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder>( (org.tensorflow.metadata.v0.Path) labelId_, getParentForChildren(), isClean()); labelId_ = null; } labelIdCase_ = 3; onChanged(); return labelPathBuilder_; } private java.lang.Object weight_ = ""; /** *
     * (optional) The weight column.
     * 
* * string weight = 2; * @return The weight. */ public java.lang.String getWeight() { java.lang.Object ref = weight_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); weight_ = s; return s; } else { return (java.lang.String) ref; } } /** *
     * (optional) The weight column.
     * 
* * string weight = 2; * @return The bytes for weight. */ public com.google.protobuf.ByteString getWeightBytes() { java.lang.Object ref = weight_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); weight_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     * (optional) The weight column.
     * 
* * string weight = 2; * @param value The weight to set. * @return This builder for chaining. */ public Builder setWeight( java.lang.String value) { if (value == null) { throw new NullPointerException(); } weight_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
     * (optional) The weight column.
     * 
* * string weight = 2; * @return This builder for chaining. */ public Builder clearWeight() { weight_ = getDefaultInstance().getWeight(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
     * (optional) The weight column.
     * 
* * string weight = 2; * @param value The bytes for weight to set. * @return This builder for chaining. */ public Builder setWeightBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); weight_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability, org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder> probabilityBuilder_; /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; * @return Whether the probability field is set. */ @java.lang.Override public boolean hasProbability() { return labelTypeCase_ == 4; } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; * @return The probability. */ @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability getProbability() { if (probabilityBuilder_ == null) { if (labelTypeCase_ == 4) { return (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_; } return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } else { if (labelTypeCase_ == 4) { return probabilityBuilder_.getMessage(); } return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ public Builder setProbability(org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability value) { if (probabilityBuilder_ == null) { if (value == null) { throw new NullPointerException(); } labelType_ = value; onChanged(); } else { probabilityBuilder_.setMessage(value); } labelTypeCase_ = 4; return this; } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ public Builder setProbability( org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder builderForValue) { if (probabilityBuilder_ == null) { labelType_ = builderForValue.build(); onChanged(); } else { probabilityBuilder_.setMessage(builderForValue.build()); } labelTypeCase_ = 4; return this; } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ public Builder mergeProbability(org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability value) { if (probabilityBuilder_ == null) { if (labelTypeCase_ == 4 && labelType_ != org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance()) { labelType_ = org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.newBuilder((org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_) .mergeFrom(value).buildPartial(); } else { labelType_ = value; } onChanged(); } else { if (labelTypeCase_ == 4) { probabilityBuilder_.mergeFrom(value); } else { probabilityBuilder_.setMessage(value); } } labelTypeCase_ = 4; return this; } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ public Builder clearProbability() { if (probabilityBuilder_ == null) { if (labelTypeCase_ == 4) { labelTypeCase_ = 0; labelType_ = null; onChanged(); } } else { if (labelTypeCase_ == 4) { labelTypeCase_ = 0; labelType_ = null; } probabilityBuilder_.clear(); } return this; } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ public org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder getProbabilityBuilder() { return getProbabilityFieldBuilder().getBuilder(); } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder getProbabilityOrBuilder() { if ((labelTypeCase_ == 4) && (probabilityBuilder_ != null)) { return probabilityBuilder_.getMessageOrBuilder(); } else { if (labelTypeCase_ == 4) { return (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_; } return org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } } /** *
     * When set means the label is a probability in range [0..1].
     * 
* * .tensorflow.metadata.v0.MultiDimensionalRegression.Probability probability = 4; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability, org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder> getProbabilityFieldBuilder() { if (probabilityBuilder_ == null) { if (!(labelTypeCase_ == 4)) { labelType_ = org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.getDefaultInstance(); } probabilityBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability, org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.MultiDimensionalRegression.ProbabilityOrBuilder>( (org.tensorflow.metadata.v0.MultiDimensionalRegression.Probability) labelType_, getParentForChildren(), isClean()); labelType_ = null; } labelTypeCase_ = 4; onChanged(); return probabilityBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.MultiDimensionalRegression) } // @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.MultiDimensionalRegression) private static final org.tensorflow.metadata.v0.MultiDimensionalRegression DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.MultiDimensionalRegression(); } public static org.tensorflow.metadata.v0.MultiDimensionalRegression getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public MultiDimensionalRegression parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public org.tensorflow.metadata.v0.MultiDimensionalRegression getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy