org.tensorflow.metadata.v0.OneDimensionalRegression Maven / Gradle / Ivy
The newest version!
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/problem_statement.proto
// Protobuf Java Version: 3.25.4
package org.tensorflow.metadata.v0;
/**
*
* A one-dimensional regression task.
* The output is a single real number, whose range is dependent upon the
* objective.
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression}
*/
public final class OneDimensionalRegression extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.OneDimensionalRegression)
OneDimensionalRegressionOrBuilder {
private static final long serialVersionUID = 0L;
// Use OneDimensionalRegression.newBuilder() to construct.
private OneDimensionalRegression(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private OneDimensionalRegression() {
weight_ = "";
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new OneDimensionalRegression();
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Builder.class);
}
public interface ProbabilityOrBuilder extends
// @@protoc_insertion_point(interface_extends:tensorflow.metadata.v0.OneDimensionalRegression.Probability)
com.google.protobuf.MessageOrBuilder {
}
/**
*
* Defines a regression problem where labels are in [0, 1] and represent a
* probability (e.g: probability of click).
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression.Probability}
*/
public static final class Probability extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.OneDimensionalRegression.Probability)
ProbabilityOrBuilder {
private static final long serialVersionUID = 0L;
// Use Probability.newBuilder() to construct.
private Probability(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private Probability() {
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new Probability();
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Probability_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Probability_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder.class);
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.metadata.v0.OneDimensionalRegression.Probability)) {
return super.equals(obj);
}
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability other = (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) obj;
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.metadata.v0.OneDimensionalRegression.Probability prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Defines a regression problem where labels are in [0, 1] and represent a
* probability (e.g: probability of click).
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression.Probability}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.OneDimensionalRegression.Probability)
org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Probability_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Probability_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder.class);
}
// Construct using org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.newBuilder()
private Builder() {
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
}
@java.lang.Override
public Builder clear() {
super.clear();
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Probability_descriptor;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability getDefaultInstanceForType() {
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability build() {
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability buildPartial() {
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability result = new org.tensorflow.metadata.v0.OneDimensionalRegression.Probability(this);
onBuilt();
return result;
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) {
return mergeFrom((org.tensorflow.metadata.v0.OneDimensionalRegression.Probability)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.metadata.v0.OneDimensionalRegression.Probability other) {
if (other == org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance()) return this;
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.OneDimensionalRegression.Probability)
}
// @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.OneDimensionalRegression.Probability)
private static final org.tensorflow.metadata.v0.OneDimensionalRegression.Probability DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.OneDimensionalRegression.Probability();
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Probability getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public Probability parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
public interface CountsOrBuilder extends
// @@protoc_insertion_point(interface_extends:tensorflow.metadata.v0.OneDimensionalRegression.Counts)
com.google.protobuf.MessageOrBuilder {
}
/**
*
* Defines a regression problem where the labels are counts i.e. integers >=0.
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression.Counts}
*/
public static final class Counts extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.OneDimensionalRegression.Counts)
CountsOrBuilder {
private static final long serialVersionUID = 0L;
// Use Counts.newBuilder() to construct.
private Counts(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private Counts() {
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new Counts();
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Counts_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Counts_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder.class);
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.metadata.v0.OneDimensionalRegression.Counts)) {
return super.equals(obj);
}
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts other = (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) obj;
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.metadata.v0.OneDimensionalRegression.Counts prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* Defines a regression problem where the labels are counts i.e. integers >=0.
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression.Counts}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.OneDimensionalRegression.Counts)
org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Counts_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Counts_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder.class);
}
// Construct using org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.newBuilder()
private Builder() {
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
}
@java.lang.Override
public Builder clear() {
super.clear();
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_Counts_descriptor;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts getDefaultInstanceForType() {
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts build() {
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts buildPartial() {
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts result = new org.tensorflow.metadata.v0.OneDimensionalRegression.Counts(this);
onBuilt();
return result;
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) {
return mergeFrom((org.tensorflow.metadata.v0.OneDimensionalRegression.Counts)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.metadata.v0.OneDimensionalRegression.Counts other) {
if (other == org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance()) return this;
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
default: {
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.OneDimensionalRegression.Counts)
}
// @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.OneDimensionalRegression.Counts)
private static final org.tensorflow.metadata.v0.OneDimensionalRegression.Counts DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.OneDimensionalRegression.Counts();
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression.Counts getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public Counts parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
private int labelIdCase_ = 0;
@SuppressWarnings("serial")
private java.lang.Object labelId_;
public enum LabelIdCase
implements com.google.protobuf.Internal.EnumLite,
com.google.protobuf.AbstractMessage.InternalOneOfEnum {
LABEL(1),
LABEL_PATH(3),
LABELID_NOT_SET(0);
private final int value;
private LabelIdCase(int value) {
this.value = value;
}
/**
* @param value The number of the enum to look for.
* @return The enum associated with the given number.
* @deprecated Use {@link #forNumber(int)} instead.
*/
@java.lang.Deprecated
public static LabelIdCase valueOf(int value) {
return forNumber(value);
}
public static LabelIdCase forNumber(int value) {
switch (value) {
case 1: return LABEL;
case 3: return LABEL_PATH;
case 0: return LABELID_NOT_SET;
default: return null;
}
}
public int getNumber() {
return this.value;
}
};
public LabelIdCase
getLabelIdCase() {
return LabelIdCase.forNumber(
labelIdCase_);
}
private int labelTypeCase_ = 0;
@SuppressWarnings("serial")
private java.lang.Object labelType_;
public enum LabelTypeCase
implements com.google.protobuf.Internal.EnumLite,
com.google.protobuf.AbstractMessage.InternalOneOfEnum {
PROBABILITY(4),
COUNTS(5),
LABELTYPE_NOT_SET(0);
private final int value;
private LabelTypeCase(int value) {
this.value = value;
}
/**
* @param value The number of the enum to look for.
* @return The enum associated with the given number.
* @deprecated Use {@link #forNumber(int)} instead.
*/
@java.lang.Deprecated
public static LabelTypeCase valueOf(int value) {
return forNumber(value);
}
public static LabelTypeCase forNumber(int value) {
switch (value) {
case 4: return PROBABILITY;
case 5: return COUNTS;
case 0: return LABELTYPE_NOT_SET;
default: return null;
}
}
public int getNumber() {
return this.value;
}
};
public LabelTypeCase
getLabelTypeCase() {
return LabelTypeCase.forNumber(
labelTypeCase_);
}
public static final int LABEL_FIELD_NUMBER = 1;
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return Whether the label field is set.
*/
public boolean hasLabel() {
return labelIdCase_ == 1;
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return The label.
*/
public java.lang.String getLabel() {
java.lang.Object ref = "";
if (labelIdCase_ == 1) {
ref = labelId_;
}
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
if (labelIdCase_ == 1) {
labelId_ = s;
}
return s;
}
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return The bytes for label.
*/
public com.google.protobuf.ByteString
getLabelBytes() {
java.lang.Object ref = "";
if (labelIdCase_ == 1) {
ref = labelId_;
}
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
if (labelIdCase_ == 1) {
labelId_ = b;
}
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int LABEL_PATH_FIELD_NUMBER = 3;
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
* @return Whether the labelPath field is set.
*/
@java.lang.Override
public boolean hasLabelPath() {
return labelIdCase_ == 3;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
* @return The labelPath.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.Path getLabelPath() {
if (labelIdCase_ == 3) {
return (org.tensorflow.metadata.v0.Path) labelId_;
}
return org.tensorflow.metadata.v0.Path.getDefaultInstance();
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.PathOrBuilder getLabelPathOrBuilder() {
if (labelIdCase_ == 3) {
return (org.tensorflow.metadata.v0.Path) labelId_;
}
return org.tensorflow.metadata.v0.Path.getDefaultInstance();
}
public static final int WEIGHT_FIELD_NUMBER = 2;
@SuppressWarnings("serial")
private volatile java.lang.Object weight_ = "";
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @return The weight.
*/
@java.lang.Override
public java.lang.String getWeight() {
java.lang.Object ref = weight_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
weight_ = s;
return s;
}
}
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @return The bytes for weight.
*/
@java.lang.Override
public com.google.protobuf.ByteString
getWeightBytes() {
java.lang.Object ref = weight_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
weight_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int PROBABILITY_FIELD_NUMBER = 4;
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
* @return Whether the probability field is set.
*/
@java.lang.Override
public boolean hasProbability() {
return labelTypeCase_ == 4;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
* @return The probability.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability getProbability() {
if (labelTypeCase_ == 4) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder getProbabilityOrBuilder() {
if (labelTypeCase_ == 4) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
public static final int COUNTS_FIELD_NUMBER = 5;
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
* @return Whether the counts field is set.
*/
@java.lang.Override
public boolean hasCounts() {
return labelTypeCase_ == 5;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
* @return The counts.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts getCounts() {
if (labelTypeCase_ == 5) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder getCountsOrBuilder() {
if (labelTypeCase_ == 5) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (labelIdCase_ == 1) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 1, labelId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weight_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 2, weight_);
}
if (labelIdCase_ == 3) {
output.writeMessage(3, (org.tensorflow.metadata.v0.Path) labelId_);
}
if (labelTypeCase_ == 4) {
output.writeMessage(4, (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_);
}
if (labelTypeCase_ == 5) {
output.writeMessage(5, (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_);
}
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (labelIdCase_ == 1) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, labelId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weight_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, weight_);
}
if (labelIdCase_ == 3) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(3, (org.tensorflow.metadata.v0.Path) labelId_);
}
if (labelTypeCase_ == 4) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(4, (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_);
}
if (labelTypeCase_ == 5) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(5, (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_);
}
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.metadata.v0.OneDimensionalRegression)) {
return super.equals(obj);
}
org.tensorflow.metadata.v0.OneDimensionalRegression other = (org.tensorflow.metadata.v0.OneDimensionalRegression) obj;
if (!getWeight()
.equals(other.getWeight())) return false;
if (!getLabelIdCase().equals(other.getLabelIdCase())) return false;
switch (labelIdCase_) {
case 1:
if (!getLabel()
.equals(other.getLabel())) return false;
break;
case 3:
if (!getLabelPath()
.equals(other.getLabelPath())) return false;
break;
case 0:
default:
}
if (!getLabelTypeCase().equals(other.getLabelTypeCase())) return false;
switch (labelTypeCase_) {
case 4:
if (!getProbability()
.equals(other.getProbability())) return false;
break;
case 5:
if (!getCounts()
.equals(other.getCounts())) return false;
break;
case 0:
default:
}
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (37 * hash) + WEIGHT_FIELD_NUMBER;
hash = (53 * hash) + getWeight().hashCode();
switch (labelIdCase_) {
case 1:
hash = (37 * hash) + LABEL_FIELD_NUMBER;
hash = (53 * hash) + getLabel().hashCode();
break;
case 3:
hash = (37 * hash) + LABEL_PATH_FIELD_NUMBER;
hash = (53 * hash) + getLabelPath().hashCode();
break;
case 0:
default:
}
switch (labelTypeCase_) {
case 4:
hash = (37 * hash) + PROBABILITY_FIELD_NUMBER;
hash = (53 * hash) + getProbability().hashCode();
break;
case 5:
hash = (37 * hash) + COUNTS_FIELD_NUMBER;
hash = (53 * hash) + getCounts().hashCode();
break;
case 0:
default:
}
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.metadata.v0.OneDimensionalRegression prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
* A one-dimensional regression task.
* The output is a single real number, whose range is dependent upon the
* objective.
*
*
* Protobuf type {@code tensorflow.metadata.v0.OneDimensionalRegression}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.OneDimensionalRegression)
org.tensorflow.metadata.v0.OneDimensionalRegressionOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.OneDimensionalRegression.class, org.tensorflow.metadata.v0.OneDimensionalRegression.Builder.class);
}
// Construct using org.tensorflow.metadata.v0.OneDimensionalRegression.newBuilder()
private Builder() {
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
}
@java.lang.Override
public Builder clear() {
super.clear();
bitField0_ = 0;
if (labelPathBuilder_ != null) {
labelPathBuilder_.clear();
}
weight_ = "";
if (probabilityBuilder_ != null) {
probabilityBuilder_.clear();
}
if (countsBuilder_ != null) {
countsBuilder_.clear();
}
labelIdCase_ = 0;
labelId_ = null;
labelTypeCase_ = 0;
labelType_ = null;
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_OneDimensionalRegression_descriptor;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression getDefaultInstanceForType() {
return org.tensorflow.metadata.v0.OneDimensionalRegression.getDefaultInstance();
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression build() {
org.tensorflow.metadata.v0.OneDimensionalRegression result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression buildPartial() {
org.tensorflow.metadata.v0.OneDimensionalRegression result = new org.tensorflow.metadata.v0.OneDimensionalRegression(this);
if (bitField0_ != 0) { buildPartial0(result); }
buildPartialOneofs(result);
onBuilt();
return result;
}
private void buildPartial0(org.tensorflow.metadata.v0.OneDimensionalRegression result) {
int from_bitField0_ = bitField0_;
if (((from_bitField0_ & 0x00000004) != 0)) {
result.weight_ = weight_;
}
}
private void buildPartialOneofs(org.tensorflow.metadata.v0.OneDimensionalRegression result) {
result.labelIdCase_ = labelIdCase_;
result.labelId_ = this.labelId_;
if (labelIdCase_ == 3 &&
labelPathBuilder_ != null) {
result.labelId_ = labelPathBuilder_.build();
}
result.labelTypeCase_ = labelTypeCase_;
result.labelType_ = this.labelType_;
if (labelTypeCase_ == 4 &&
probabilityBuilder_ != null) {
result.labelType_ = probabilityBuilder_.build();
}
if (labelTypeCase_ == 5 &&
countsBuilder_ != null) {
result.labelType_ = countsBuilder_.build();
}
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.metadata.v0.OneDimensionalRegression) {
return mergeFrom((org.tensorflow.metadata.v0.OneDimensionalRegression)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.metadata.v0.OneDimensionalRegression other) {
if (other == org.tensorflow.metadata.v0.OneDimensionalRegression.getDefaultInstance()) return this;
if (!other.getWeight().isEmpty()) {
weight_ = other.weight_;
bitField0_ |= 0x00000004;
onChanged();
}
switch (other.getLabelIdCase()) {
case LABEL: {
labelIdCase_ = 1;
labelId_ = other.labelId_;
onChanged();
break;
}
case LABEL_PATH: {
mergeLabelPath(other.getLabelPath());
break;
}
case LABELID_NOT_SET: {
break;
}
}
switch (other.getLabelTypeCase()) {
case PROBABILITY: {
mergeProbability(other.getProbability());
break;
}
case COUNTS: {
mergeCounts(other.getCounts());
break;
}
case LABELTYPE_NOT_SET: {
break;
}
}
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 10: {
java.lang.String s = input.readStringRequireUtf8();
labelIdCase_ = 1;
labelId_ = s;
break;
} // case 10
case 18: {
weight_ = input.readStringRequireUtf8();
bitField0_ |= 0x00000004;
break;
} // case 18
case 26: {
input.readMessage(
getLabelPathFieldBuilder().getBuilder(),
extensionRegistry);
labelIdCase_ = 3;
break;
} // case 26
case 34: {
input.readMessage(
getProbabilityFieldBuilder().getBuilder(),
extensionRegistry);
labelTypeCase_ = 4;
break;
} // case 34
case 42: {
input.readMessage(
getCountsFieldBuilder().getBuilder(),
extensionRegistry);
labelTypeCase_ = 5;
break;
} // case 42
default: {
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
private int labelIdCase_ = 0;
private java.lang.Object labelId_;
public LabelIdCase
getLabelIdCase() {
return LabelIdCase.forNumber(
labelIdCase_);
}
public Builder clearLabelId() {
labelIdCase_ = 0;
labelId_ = null;
onChanged();
return this;
}
private int labelTypeCase_ = 0;
private java.lang.Object labelType_;
public LabelTypeCase
getLabelTypeCase() {
return LabelTypeCase.forNumber(
labelTypeCase_);
}
public Builder clearLabelType() {
labelTypeCase_ = 0;
labelType_ = null;
onChanged();
return this;
}
private int bitField0_;
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return Whether the label field is set.
*/
@java.lang.Override
public boolean hasLabel() {
return labelIdCase_ == 1;
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return The label.
*/
@java.lang.Override
public java.lang.String getLabel() {
java.lang.Object ref = "";
if (labelIdCase_ == 1) {
ref = labelId_;
}
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
if (labelIdCase_ == 1) {
labelId_ = s;
}
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return The bytes for label.
*/
@java.lang.Override
public com.google.protobuf.ByteString
getLabelBytes() {
java.lang.Object ref = "";
if (labelIdCase_ == 1) {
ref = labelId_;
}
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
if (labelIdCase_ == 1) {
labelId_ = b;
}
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @param value The label to set.
* @return This builder for chaining.
*/
public Builder setLabel(
java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
labelIdCase_ = 1;
labelId_ = value;
onChanged();
return this;
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @return This builder for chaining.
*/
public Builder clearLabel() {
if (labelIdCase_ == 1) {
labelIdCase_ = 0;
labelId_ = null;
onChanged();
}
return this;
}
/**
*
* The name of the label. Assumes the label is a flat, top-level field.
*
*
* string label = 1;
* @param value The bytes for label to set.
* @return This builder for chaining.
*/
public Builder setLabelBytes(
com.google.protobuf.ByteString value) {
if (value == null) { throw new NullPointerException(); }
checkByteStringIsUtf8(value);
labelIdCase_ = 1;
labelId_ = value;
onChanged();
return this;
}
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder> labelPathBuilder_;
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
* @return Whether the labelPath field is set.
*/
@java.lang.Override
public boolean hasLabelPath() {
return labelIdCase_ == 3;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
* @return The labelPath.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.Path getLabelPath() {
if (labelPathBuilder_ == null) {
if (labelIdCase_ == 3) {
return (org.tensorflow.metadata.v0.Path) labelId_;
}
return org.tensorflow.metadata.v0.Path.getDefaultInstance();
} else {
if (labelIdCase_ == 3) {
return labelPathBuilder_.getMessage();
}
return org.tensorflow.metadata.v0.Path.getDefaultInstance();
}
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
public Builder setLabelPath(org.tensorflow.metadata.v0.Path value) {
if (labelPathBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
labelId_ = value;
onChanged();
} else {
labelPathBuilder_.setMessage(value);
}
labelIdCase_ = 3;
return this;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
public Builder setLabelPath(
org.tensorflow.metadata.v0.Path.Builder builderForValue) {
if (labelPathBuilder_ == null) {
labelId_ = builderForValue.build();
onChanged();
} else {
labelPathBuilder_.setMessage(builderForValue.build());
}
labelIdCase_ = 3;
return this;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
public Builder mergeLabelPath(org.tensorflow.metadata.v0.Path value) {
if (labelPathBuilder_ == null) {
if (labelIdCase_ == 3 &&
labelId_ != org.tensorflow.metadata.v0.Path.getDefaultInstance()) {
labelId_ = org.tensorflow.metadata.v0.Path.newBuilder((org.tensorflow.metadata.v0.Path) labelId_)
.mergeFrom(value).buildPartial();
} else {
labelId_ = value;
}
onChanged();
} else {
if (labelIdCase_ == 3) {
labelPathBuilder_.mergeFrom(value);
} else {
labelPathBuilder_.setMessage(value);
}
}
labelIdCase_ = 3;
return this;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
public Builder clearLabelPath() {
if (labelPathBuilder_ == null) {
if (labelIdCase_ == 3) {
labelIdCase_ = 0;
labelId_ = null;
onChanged();
}
} else {
if (labelIdCase_ == 3) {
labelIdCase_ = 0;
labelId_ = null;
}
labelPathBuilder_.clear();
}
return this;
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
public org.tensorflow.metadata.v0.Path.Builder getLabelPathBuilder() {
return getLabelPathFieldBuilder().getBuilder();
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.PathOrBuilder getLabelPathOrBuilder() {
if ((labelIdCase_ == 3) && (labelPathBuilder_ != null)) {
return labelPathBuilder_.getMessageOrBuilder();
} else {
if (labelIdCase_ == 3) {
return (org.tensorflow.metadata.v0.Path) labelId_;
}
return org.tensorflow.metadata.v0.Path.getDefaultInstance();
}
}
/**
*
* A path can be used instead of a flat string if the label is nested.
*
*
* .tensorflow.metadata.v0.Path label_path = 3;
*/
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder>
getLabelPathFieldBuilder() {
if (labelPathBuilder_ == null) {
if (!(labelIdCase_ == 3)) {
labelId_ = org.tensorflow.metadata.v0.Path.getDefaultInstance();
}
labelPathBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.Path, org.tensorflow.metadata.v0.Path.Builder, org.tensorflow.metadata.v0.PathOrBuilder>(
(org.tensorflow.metadata.v0.Path) labelId_,
getParentForChildren(),
isClean());
labelId_ = null;
}
labelIdCase_ = 3;
onChanged();
return labelPathBuilder_;
}
private java.lang.Object weight_ = "";
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @return The weight.
*/
public java.lang.String getWeight() {
java.lang.Object ref = weight_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
weight_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @return The bytes for weight.
*/
public com.google.protobuf.ByteString
getWeightBytes() {
java.lang.Object ref = weight_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
weight_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @param value The weight to set.
* @return This builder for chaining.
*/
public Builder setWeight(
java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
weight_ = value;
bitField0_ |= 0x00000004;
onChanged();
return this;
}
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @return This builder for chaining.
*/
public Builder clearWeight() {
weight_ = getDefaultInstance().getWeight();
bitField0_ = (bitField0_ & ~0x00000004);
onChanged();
return this;
}
/**
*
* (optional) The weight column.
*
*
* string weight = 2;
* @param value The bytes for weight to set.
* @return This builder for chaining.
*/
public Builder setWeightBytes(
com.google.protobuf.ByteString value) {
if (value == null) { throw new NullPointerException(); }
checkByteStringIsUtf8(value);
weight_ = value;
bitField0_ |= 0x00000004;
onChanged();
return this;
}
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability, org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder> probabilityBuilder_;
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
* @return Whether the probability field is set.
*/
@java.lang.Override
public boolean hasProbability() {
return labelTypeCase_ == 4;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
* @return The probability.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability getProbability() {
if (probabilityBuilder_ == null) {
if (labelTypeCase_ == 4) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
} else {
if (labelTypeCase_ == 4) {
return probabilityBuilder_.getMessage();
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
public Builder setProbability(org.tensorflow.metadata.v0.OneDimensionalRegression.Probability value) {
if (probabilityBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
labelType_ = value;
onChanged();
} else {
probabilityBuilder_.setMessage(value);
}
labelTypeCase_ = 4;
return this;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
public Builder setProbability(
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder builderForValue) {
if (probabilityBuilder_ == null) {
labelType_ = builderForValue.build();
onChanged();
} else {
probabilityBuilder_.setMessage(builderForValue.build());
}
labelTypeCase_ = 4;
return this;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
public Builder mergeProbability(org.tensorflow.metadata.v0.OneDimensionalRegression.Probability value) {
if (probabilityBuilder_ == null) {
if (labelTypeCase_ == 4 &&
labelType_ != org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance()) {
labelType_ = org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.newBuilder((org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_)
.mergeFrom(value).buildPartial();
} else {
labelType_ = value;
}
onChanged();
} else {
if (labelTypeCase_ == 4) {
probabilityBuilder_.mergeFrom(value);
} else {
probabilityBuilder_.setMessage(value);
}
}
labelTypeCase_ = 4;
return this;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
public Builder clearProbability() {
if (probabilityBuilder_ == null) {
if (labelTypeCase_ == 4) {
labelTypeCase_ = 0;
labelType_ = null;
onChanged();
}
} else {
if (labelTypeCase_ == 4) {
labelTypeCase_ = 0;
labelType_ = null;
}
probabilityBuilder_.clear();
}
return this;
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
public org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder getProbabilityBuilder() {
return getProbabilityFieldBuilder().getBuilder();
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder getProbabilityOrBuilder() {
if ((labelTypeCase_ == 4) && (probabilityBuilder_ != null)) {
return probabilityBuilder_.getMessageOrBuilder();
} else {
if (labelTypeCase_ == 4) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
}
/**
*
* When set means the label is a probability in range [0..1].
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Probability probability = 4;
*/
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability, org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder>
getProbabilityFieldBuilder() {
if (probabilityBuilder_ == null) {
if (!(labelTypeCase_ == 4)) {
labelType_ = org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.getDefaultInstance();
}
probabilityBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Probability, org.tensorflow.metadata.v0.OneDimensionalRegression.Probability.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.ProbabilityOrBuilder>(
(org.tensorflow.metadata.v0.OneDimensionalRegression.Probability) labelType_,
getParentForChildren(),
isClean());
labelType_ = null;
}
labelTypeCase_ = 4;
onChanged();
return probabilityBuilder_;
}
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts, org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder> countsBuilder_;
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
* @return Whether the counts field is set.
*/
@java.lang.Override
public boolean hasCounts() {
return labelTypeCase_ == 5;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
* @return The counts.
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts getCounts() {
if (countsBuilder_ == null) {
if (labelTypeCase_ == 5) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
} else {
if (labelTypeCase_ == 5) {
return countsBuilder_.getMessage();
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
public Builder setCounts(org.tensorflow.metadata.v0.OneDimensionalRegression.Counts value) {
if (countsBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
labelType_ = value;
onChanged();
} else {
countsBuilder_.setMessage(value);
}
labelTypeCase_ = 5;
return this;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
public Builder setCounts(
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder builderForValue) {
if (countsBuilder_ == null) {
labelType_ = builderForValue.build();
onChanged();
} else {
countsBuilder_.setMessage(builderForValue.build());
}
labelTypeCase_ = 5;
return this;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
public Builder mergeCounts(org.tensorflow.metadata.v0.OneDimensionalRegression.Counts value) {
if (countsBuilder_ == null) {
if (labelTypeCase_ == 5 &&
labelType_ != org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance()) {
labelType_ = org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.newBuilder((org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_)
.mergeFrom(value).buildPartial();
} else {
labelType_ = value;
}
onChanged();
} else {
if (labelTypeCase_ == 5) {
countsBuilder_.mergeFrom(value);
} else {
countsBuilder_.setMessage(value);
}
}
labelTypeCase_ = 5;
return this;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
public Builder clearCounts() {
if (countsBuilder_ == null) {
if (labelTypeCase_ == 5) {
labelTypeCase_ = 0;
labelType_ = null;
onChanged();
}
} else {
if (labelTypeCase_ == 5) {
labelTypeCase_ = 0;
labelType_ = null;
}
countsBuilder_.clear();
}
return this;
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
public org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder getCountsBuilder() {
return getCountsFieldBuilder().getBuilder();
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder getCountsOrBuilder() {
if ((labelTypeCase_ == 5) && (countsBuilder_ != null)) {
return countsBuilder_.getMessageOrBuilder();
} else {
if (labelTypeCase_ == 5) {
return (org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_;
}
return org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
}
/**
*
* When set the label corresponds to counts from a poisson distribution.
* Eg: Number of googlers contributing to memegen each year.
*
*
* .tensorflow.metadata.v0.OneDimensionalRegression.Counts counts = 5;
*/
private com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts, org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder>
getCountsFieldBuilder() {
if (countsBuilder_ == null) {
if (!(labelTypeCase_ == 5)) {
labelType_ = org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.getDefaultInstance();
}
countsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3<
org.tensorflow.metadata.v0.OneDimensionalRegression.Counts, org.tensorflow.metadata.v0.OneDimensionalRegression.Counts.Builder, org.tensorflow.metadata.v0.OneDimensionalRegression.CountsOrBuilder>(
(org.tensorflow.metadata.v0.OneDimensionalRegression.Counts) labelType_,
getParentForChildren(),
isClean());
labelType_ = null;
}
labelTypeCase_ = 5;
onChanged();
return countsBuilder_;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.OneDimensionalRegression)
}
// @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.OneDimensionalRegression)
private static final org.tensorflow.metadata.v0.OneDimensionalRegression DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.OneDimensionalRegression();
}
public static org.tensorflow.metadata.v0.OneDimensionalRegression getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public OneDimensionalRegression parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public org.tensorflow.metadata.v0.OneDimensionalRegression getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy