All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.metadata.v0.ProblemStatement Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/problem_statement.proto

// Protobuf Java Version: 3.25.4
package org.tensorflow.metadata.v0;

/**
 * Protobuf type {@code tensorflow.metadata.v0.ProblemStatement}
 */
public final class ProblemStatement extends
    com.google.protobuf.GeneratedMessageV3 implements
    // @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.ProblemStatement)
    ProblemStatementOrBuilder {
private static final long serialVersionUID = 0L;
  // Use ProblemStatement.newBuilder() to construct.
  private ProblemStatement(com.google.protobuf.GeneratedMessageV3.Builder builder) {
    super(builder);
  }
  private ProblemStatement() {
    description_ = "";
    owner_ =
        com.google.protobuf.LazyStringArrayList.emptyList();
    environment_ = "";
    metaOptimizationTarget_ = java.util.Collections.emptyList();
    tasks_ = java.util.Collections.emptyList();
  }

  @java.lang.Override
  @SuppressWarnings({"unused"})
  protected java.lang.Object newInstance(
      UnusedPrivateParameter unused) {
    return new ProblemStatement();
  }

  public static final com.google.protobuf.Descriptors.Descriptor
      getDescriptor() {
    return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor;
  }

  @java.lang.Override
  protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
      internalGetFieldAccessorTable() {
    return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_fieldAccessorTable
        .ensureFieldAccessorsInitialized(
            org.tensorflow.metadata.v0.ProblemStatement.class, org.tensorflow.metadata.v0.ProblemStatement.Builder.class);
  }

  public static final int DESCRIPTION_FIELD_NUMBER = 2;
  @SuppressWarnings("serial")
  private volatile java.lang.Object description_ = "";
  /**
   * 
   * Description of the problem statement. For example, should describe how
   * the problem statement was arrived at: what experiments were run, what
   * side-by-sides were considered.
   * 
* * string description = 2; * @return The description. */ @java.lang.Override public java.lang.String getDescription() { java.lang.Object ref = description_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); description_ = s; return s; } } /** *
   * Description of the problem statement. For example, should describe how
   * the problem statement was arrived at: what experiments were run, what
   * side-by-sides were considered.
   * 
* * string description = 2; * @return The bytes for description. */ @java.lang.Override public com.google.protobuf.ByteString getDescriptionBytes() { java.lang.Object ref = description_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); description_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int OWNER_FIELD_NUMBER = 3; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList owner_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** * repeated string owner = 3; * @return A list containing the owner. */ public com.google.protobuf.ProtocolStringList getOwnerList() { return owner_; } /** * repeated string owner = 3; * @return The count of owner. */ public int getOwnerCount() { return owner_.size(); } /** * repeated string owner = 3; * @param index The index of the element to return. * @return The owner at the given index. */ public java.lang.String getOwner(int index) { return owner_.get(index); } /** * repeated string owner = 3; * @param index The index of the value to return. * @return The bytes of the owner at the given index. */ public com.google.protobuf.ByteString getOwnerBytes(int index) { return owner_.getByteString(index); } public static final int ENVIRONMENT_FIELD_NUMBER = 4; @SuppressWarnings("serial") private volatile java.lang.Object environment_ = ""; /** *
   * The environment of the ProblemStatement (optional). Specifies an
   * environment string in the SchemaProto.
   * 
* * string environment = 4; * @return The environment. */ @java.lang.Override public java.lang.String getEnvironment() { java.lang.Object ref = environment_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); environment_ = s; return s; } } /** *
   * The environment of the ProblemStatement (optional). Specifies an
   * environment string in the SchemaProto.
   * 
* * string environment = 4; * @return The bytes for environment. */ @java.lang.Override public com.google.protobuf.ByteString getEnvironmentBytes() { java.lang.Object ref = environment_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); environment_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int META_OPTIMIZATION_TARGET_FIELD_NUMBER = 7; @SuppressWarnings("serial") private java.util.List metaOptimizationTarget_; /** *
   * The target used for meta-optimization. This is used to compare multiple
   * solutions for this problem. For example, if two solutions have different
   * candidates, a tuning tool can use meta_optimization_target to decide which
   * candidate performs the best.
   * A repeated meta-optimization target implies the weighted sum of the
   * meta_optimization targets of any non-thresholded metrics.
   * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ @java.lang.Override public java.util.List getMetaOptimizationTargetList() { return metaOptimizationTarget_; } /** *
   * The target used for meta-optimization. This is used to compare multiple
   * solutions for this problem. For example, if two solutions have different
   * candidates, a tuning tool can use meta_optimization_target to decide which
   * candidate performs the best.
   * A repeated meta-optimization target implies the weighted sum of the
   * meta_optimization targets of any non-thresholded metrics.
   * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ @java.lang.Override public java.util.List getMetaOptimizationTargetOrBuilderList() { return metaOptimizationTarget_; } /** *
   * The target used for meta-optimization. This is used to compare multiple
   * solutions for this problem. For example, if two solutions have different
   * candidates, a tuning tool can use meta_optimization_target to decide which
   * candidate performs the best.
   * A repeated meta-optimization target implies the weighted sum of the
   * meta_optimization targets of any non-thresholded metrics.
   * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ @java.lang.Override public int getMetaOptimizationTargetCount() { return metaOptimizationTarget_.size(); } /** *
   * The target used for meta-optimization. This is used to compare multiple
   * solutions for this problem. For example, if two solutions have different
   * candidates, a tuning tool can use meta_optimization_target to decide which
   * candidate performs the best.
   * A repeated meta-optimization target implies the weighted sum of the
   * meta_optimization targets of any non-thresholded metrics.
   * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ @java.lang.Override public org.tensorflow.metadata.v0.MetaOptimizationTarget getMetaOptimizationTarget(int index) { return metaOptimizationTarget_.get(index); } /** *
   * The target used for meta-optimization. This is used to compare multiple
   * solutions for this problem. For example, if two solutions have different
   * candidates, a tuning tool can use meta_optimization_target to decide which
   * candidate performs the best.
   * A repeated meta-optimization target implies the weighted sum of the
   * meta_optimization targets of any non-thresholded metrics.
   * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ @java.lang.Override public org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder getMetaOptimizationTargetOrBuilder( int index) { return metaOptimizationTarget_.get(index); } public static final int MULTI_OBJECTIVE_FIELD_NUMBER = 8; private boolean multiObjective_ = false; /** * bool multi_objective = 8 [deprecated = true]; * @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated. * See tensorflow_metadata/proto/v0/problem_statement.proto;l=356 * @return The multiObjective. */ @java.lang.Override @java.lang.Deprecated public boolean getMultiObjective() { return multiObjective_; } public static final int TASKS_FIELD_NUMBER = 9; @SuppressWarnings("serial") private java.util.List tasks_; /** *
   * Tasks for heads of the generated model. This field is repeated because some
   * models are multi-task models. Each task should have a unique name.
   * If you wish to directly optimize this problem statement, you need
   * to specify the objective in the task.
   * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ @java.lang.Override public java.util.List getTasksList() { return tasks_; } /** *
   * Tasks for heads of the generated model. This field is repeated because some
   * models are multi-task models. Each task should have a unique name.
   * If you wish to directly optimize this problem statement, you need
   * to specify the objective in the task.
   * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ @java.lang.Override public java.util.List getTasksOrBuilderList() { return tasks_; } /** *
   * Tasks for heads of the generated model. This field is repeated because some
   * models are multi-task models. Each task should have a unique name.
   * If you wish to directly optimize this problem statement, you need
   * to specify the objective in the task.
   * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ @java.lang.Override public int getTasksCount() { return tasks_.size(); } /** *
   * Tasks for heads of the generated model. This field is repeated because some
   * models are multi-task models. Each task should have a unique name.
   * If you wish to directly optimize this problem statement, you need
   * to specify the objective in the task.
   * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ @java.lang.Override public org.tensorflow.metadata.v0.Task getTasks(int index) { return tasks_.get(index); } /** *
   * Tasks for heads of the generated model. This field is repeated because some
   * models are multi-task models. Each task should have a unique name.
   * If you wish to directly optimize this problem statement, you need
   * to specify the objective in the task.
   * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ @java.lang.Override public org.tensorflow.metadata.v0.TaskOrBuilder getTasksOrBuilder( int index) { return tasks_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(description_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, description_); } for (int i = 0; i < owner_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, owner_.getRaw(i)); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(environment_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, environment_); } for (int i = 0; i < metaOptimizationTarget_.size(); i++) { output.writeMessage(7, metaOptimizationTarget_.get(i)); } if (multiObjective_ != false) { output.writeBool(8, multiObjective_); } for (int i = 0; i < tasks_.size(); i++) { output.writeMessage(9, tasks_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(description_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, description_); } { int dataSize = 0; for (int i = 0; i < owner_.size(); i++) { dataSize += computeStringSizeNoTag(owner_.getRaw(i)); } size += dataSize; size += 1 * getOwnerList().size(); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(environment_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, environment_); } for (int i = 0; i < metaOptimizationTarget_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(7, metaOptimizationTarget_.get(i)); } if (multiObjective_ != false) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(8, multiObjective_); } for (int i = 0; i < tasks_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(9, tasks_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.metadata.v0.ProblemStatement)) { return super.equals(obj); } org.tensorflow.metadata.v0.ProblemStatement other = (org.tensorflow.metadata.v0.ProblemStatement) obj; if (!getDescription() .equals(other.getDescription())) return false; if (!getOwnerList() .equals(other.getOwnerList())) return false; if (!getEnvironment() .equals(other.getEnvironment())) return false; if (!getMetaOptimizationTargetList() .equals(other.getMetaOptimizationTargetList())) return false; if (getMultiObjective() != other.getMultiObjective()) return false; if (!getTasksList() .equals(other.getTasksList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + DESCRIPTION_FIELD_NUMBER; hash = (53 * hash) + getDescription().hashCode(); if (getOwnerCount() > 0) { hash = (37 * hash) + OWNER_FIELD_NUMBER; hash = (53 * hash) + getOwnerList().hashCode(); } hash = (37 * hash) + ENVIRONMENT_FIELD_NUMBER; hash = (53 * hash) + getEnvironment().hashCode(); if (getMetaOptimizationTargetCount() > 0) { hash = (37 * hash) + META_OPTIMIZATION_TARGET_FIELD_NUMBER; hash = (53 * hash) + getMetaOptimizationTargetList().hashCode(); } hash = (37 * hash) + MULTI_OBJECTIVE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getMultiObjective()); if (getTasksCount() > 0) { hash = (37 * hash) + TASKS_FIELD_NUMBER; hash = (53 * hash) + getTasksList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.ProblemStatement parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.ProblemStatement parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.ProblemStatement parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.metadata.v0.ProblemStatement prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * Protobuf type {@code tensorflow.metadata.v0.ProblemStatement} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.ProblemStatement) org.tensorflow.metadata.v0.ProblemStatementOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.ProblemStatement.class, org.tensorflow.metadata.v0.ProblemStatement.Builder.class); } // Construct using org.tensorflow.metadata.v0.ProblemStatement.newBuilder() private Builder() { } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; description_ = ""; owner_ = com.google.protobuf.LazyStringArrayList.emptyList(); environment_ = ""; if (metaOptimizationTargetBuilder_ == null) { metaOptimizationTarget_ = java.util.Collections.emptyList(); } else { metaOptimizationTarget_ = null; metaOptimizationTargetBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); multiObjective_ = false; if (tasksBuilder_ == null) { tasks_ = java.util.Collections.emptyList(); } else { tasks_ = null; tasksBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor; } @java.lang.Override public org.tensorflow.metadata.v0.ProblemStatement getDefaultInstanceForType() { return org.tensorflow.metadata.v0.ProblemStatement.getDefaultInstance(); } @java.lang.Override public org.tensorflow.metadata.v0.ProblemStatement build() { org.tensorflow.metadata.v0.ProblemStatement result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public org.tensorflow.metadata.v0.ProblemStatement buildPartial() { org.tensorflow.metadata.v0.ProblemStatement result = new org.tensorflow.metadata.v0.ProblemStatement(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(org.tensorflow.metadata.v0.ProblemStatement result) { if (metaOptimizationTargetBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { metaOptimizationTarget_ = java.util.Collections.unmodifiableList(metaOptimizationTarget_); bitField0_ = (bitField0_ & ~0x00000008); } result.metaOptimizationTarget_ = metaOptimizationTarget_; } else { result.metaOptimizationTarget_ = metaOptimizationTargetBuilder_.build(); } if (tasksBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { tasks_ = java.util.Collections.unmodifiableList(tasks_); bitField0_ = (bitField0_ & ~0x00000020); } result.tasks_ = tasks_; } else { result.tasks_ = tasksBuilder_.build(); } } private void buildPartial0(org.tensorflow.metadata.v0.ProblemStatement result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { result.description_ = description_; } if (((from_bitField0_ & 0x00000002) != 0)) { owner_.makeImmutable(); result.owner_ = owner_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.environment_ = environment_; } if (((from_bitField0_ & 0x00000010) != 0)) { result.multiObjective_ = multiObjective_; } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.metadata.v0.ProblemStatement) { return mergeFrom((org.tensorflow.metadata.v0.ProblemStatement)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.metadata.v0.ProblemStatement other) { if (other == org.tensorflow.metadata.v0.ProblemStatement.getDefaultInstance()) return this; if (!other.getDescription().isEmpty()) { description_ = other.description_; bitField0_ |= 0x00000001; onChanged(); } if (!other.owner_.isEmpty()) { if (owner_.isEmpty()) { owner_ = other.owner_; bitField0_ |= 0x00000002; } else { ensureOwnerIsMutable(); owner_.addAll(other.owner_); } onChanged(); } if (!other.getEnvironment().isEmpty()) { environment_ = other.environment_; bitField0_ |= 0x00000004; onChanged(); } if (metaOptimizationTargetBuilder_ == null) { if (!other.metaOptimizationTarget_.isEmpty()) { if (metaOptimizationTarget_.isEmpty()) { metaOptimizationTarget_ = other.metaOptimizationTarget_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.addAll(other.metaOptimizationTarget_); } onChanged(); } } else { if (!other.metaOptimizationTarget_.isEmpty()) { if (metaOptimizationTargetBuilder_.isEmpty()) { metaOptimizationTargetBuilder_.dispose(); metaOptimizationTargetBuilder_ = null; metaOptimizationTarget_ = other.metaOptimizationTarget_; bitField0_ = (bitField0_ & ~0x00000008); metaOptimizationTargetBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getMetaOptimizationTargetFieldBuilder() : null; } else { metaOptimizationTargetBuilder_.addAllMessages(other.metaOptimizationTarget_); } } } if (other.getMultiObjective() != false) { setMultiObjective(other.getMultiObjective()); } if (tasksBuilder_ == null) { if (!other.tasks_.isEmpty()) { if (tasks_.isEmpty()) { tasks_ = other.tasks_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureTasksIsMutable(); tasks_.addAll(other.tasks_); } onChanged(); } } else { if (!other.tasks_.isEmpty()) { if (tasksBuilder_.isEmpty()) { tasksBuilder_.dispose(); tasksBuilder_ = null; tasks_ = other.tasks_; bitField0_ = (bitField0_ & ~0x00000020); tasksBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getTasksFieldBuilder() : null; } else { tasksBuilder_.addAllMessages(other.tasks_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 18: { description_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000001; break; } // case 18 case 26: { java.lang.String s = input.readStringRequireUtf8(); ensureOwnerIsMutable(); owner_.add(s); break; } // case 26 case 34: { environment_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000004; break; } // case 34 case 58: { org.tensorflow.metadata.v0.MetaOptimizationTarget m = input.readMessage( org.tensorflow.metadata.v0.MetaOptimizationTarget.parser(), extensionRegistry); if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.add(m); } else { metaOptimizationTargetBuilder_.addMessage(m); } break; } // case 58 case 64: { multiObjective_ = input.readBool(); bitField0_ |= 0x00000010; break; } // case 64 case 74: { org.tensorflow.metadata.v0.Task m = input.readMessage( org.tensorflow.metadata.v0.Task.parser(), extensionRegistry); if (tasksBuilder_ == null) { ensureTasksIsMutable(); tasks_.add(m); } else { tasksBuilder_.addMessage(m); } break; } // case 74 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object description_ = ""; /** *
     * Description of the problem statement. For example, should describe how
     * the problem statement was arrived at: what experiments were run, what
     * side-by-sides were considered.
     * 
* * string description = 2; * @return The description. */ public java.lang.String getDescription() { java.lang.Object ref = description_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); description_ = s; return s; } else { return (java.lang.String) ref; } } /** *
     * Description of the problem statement. For example, should describe how
     * the problem statement was arrived at: what experiments were run, what
     * side-by-sides were considered.
     * 
* * string description = 2; * @return The bytes for description. */ public com.google.protobuf.ByteString getDescriptionBytes() { java.lang.Object ref = description_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); description_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     * Description of the problem statement. For example, should describe how
     * the problem statement was arrived at: what experiments were run, what
     * side-by-sides were considered.
     * 
* * string description = 2; * @param value The description to set. * @return This builder for chaining. */ public Builder setDescription( java.lang.String value) { if (value == null) { throw new NullPointerException(); } description_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** *
     * Description of the problem statement. For example, should describe how
     * the problem statement was arrived at: what experiments were run, what
     * side-by-sides were considered.
     * 
* * string description = 2; * @return This builder for chaining. */ public Builder clearDescription() { description_ = getDefaultInstance().getDescription(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** *
     * Description of the problem statement. For example, should describe how
     * the problem statement was arrived at: what experiments were run, what
     * side-by-sides were considered.
     * 
* * string description = 2; * @param value The bytes for description to set. * @return This builder for chaining. */ public Builder setDescriptionBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); description_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private com.google.protobuf.LazyStringArrayList owner_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureOwnerIsMutable() { if (!owner_.isModifiable()) { owner_ = new com.google.protobuf.LazyStringArrayList(owner_); } bitField0_ |= 0x00000002; } /** * repeated string owner = 3; * @return A list containing the owner. */ public com.google.protobuf.ProtocolStringList getOwnerList() { owner_.makeImmutable(); return owner_; } /** * repeated string owner = 3; * @return The count of owner. */ public int getOwnerCount() { return owner_.size(); } /** * repeated string owner = 3; * @param index The index of the element to return. * @return The owner at the given index. */ public java.lang.String getOwner(int index) { return owner_.get(index); } /** * repeated string owner = 3; * @param index The index of the value to return. * @return The bytes of the owner at the given index. */ public com.google.protobuf.ByteString getOwnerBytes(int index) { return owner_.getByteString(index); } /** * repeated string owner = 3; * @param index The index to set the value at. * @param value The owner to set. * @return This builder for chaining. */ public Builder setOwner( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOwnerIsMutable(); owner_.set(index, value); bitField0_ |= 0x00000002; onChanged(); return this; } /** * repeated string owner = 3; * @param value The owner to add. * @return This builder for chaining. */ public Builder addOwner( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureOwnerIsMutable(); owner_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } /** * repeated string owner = 3; * @param values The owner to add. * @return This builder for chaining. */ public Builder addAllOwner( java.lang.Iterable values) { ensureOwnerIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, owner_); bitField0_ |= 0x00000002; onChanged(); return this; } /** * repeated string owner = 3; * @return This builder for chaining. */ public Builder clearOwner() { owner_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000002);; onChanged(); return this; } /** * repeated string owner = 3; * @param value The bytes of the owner to add. * @return This builder for chaining. */ public Builder addOwnerBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensureOwnerIsMutable(); owner_.add(value); bitField0_ |= 0x00000002; onChanged(); return this; } private java.lang.Object environment_ = ""; /** *
     * The environment of the ProblemStatement (optional). Specifies an
     * environment string in the SchemaProto.
     * 
* * string environment = 4; * @return The environment. */ public java.lang.String getEnvironment() { java.lang.Object ref = environment_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); environment_ = s; return s; } else { return (java.lang.String) ref; } } /** *
     * The environment of the ProblemStatement (optional). Specifies an
     * environment string in the SchemaProto.
     * 
* * string environment = 4; * @return The bytes for environment. */ public com.google.protobuf.ByteString getEnvironmentBytes() { java.lang.Object ref = environment_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8( (java.lang.String) ref); environment_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** *
     * The environment of the ProblemStatement (optional). Specifies an
     * environment string in the SchemaProto.
     * 
* * string environment = 4; * @param value The environment to set. * @return This builder for chaining. */ public Builder setEnvironment( java.lang.String value) { if (value == null) { throw new NullPointerException(); } environment_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** *
     * The environment of the ProblemStatement (optional). Specifies an
     * environment string in the SchemaProto.
     * 
* * string environment = 4; * @return This builder for chaining. */ public Builder clearEnvironment() { environment_ = getDefaultInstance().getEnvironment(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); return this; } /** *
     * The environment of the ProblemStatement (optional). Specifies an
     * environment string in the SchemaProto.
     * 
* * string environment = 4; * @param value The bytes for environment to set. * @return This builder for chaining. */ public Builder setEnvironmentBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); environment_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } private java.util.List metaOptimizationTarget_ = java.util.Collections.emptyList(); private void ensureMetaOptimizationTargetIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { metaOptimizationTarget_ = new java.util.ArrayList(metaOptimizationTarget_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder> metaOptimizationTargetBuilder_; /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public java.util.List getMetaOptimizationTargetList() { if (metaOptimizationTargetBuilder_ == null) { return java.util.Collections.unmodifiableList(metaOptimizationTarget_); } else { return metaOptimizationTargetBuilder_.getMessageList(); } } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public int getMetaOptimizationTargetCount() { if (metaOptimizationTargetBuilder_ == null) { return metaOptimizationTarget_.size(); } else { return metaOptimizationTargetBuilder_.getCount(); } } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public org.tensorflow.metadata.v0.MetaOptimizationTarget getMetaOptimizationTarget(int index) { if (metaOptimizationTargetBuilder_ == null) { return metaOptimizationTarget_.get(index); } else { return metaOptimizationTargetBuilder_.getMessage(index); } } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder setMetaOptimizationTarget( int index, org.tensorflow.metadata.v0.MetaOptimizationTarget value) { if (metaOptimizationTargetBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.set(index, value); onChanged(); } else { metaOptimizationTargetBuilder_.setMessage(index, value); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder setMetaOptimizationTarget( int index, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) { if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.set(index, builderForValue.build()); onChanged(); } else { metaOptimizationTargetBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder addMetaOptimizationTarget(org.tensorflow.metadata.v0.MetaOptimizationTarget value) { if (metaOptimizationTargetBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.add(value); onChanged(); } else { metaOptimizationTargetBuilder_.addMessage(value); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder addMetaOptimizationTarget( int index, org.tensorflow.metadata.v0.MetaOptimizationTarget value) { if (metaOptimizationTargetBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.add(index, value); onChanged(); } else { metaOptimizationTargetBuilder_.addMessage(index, value); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder addMetaOptimizationTarget( org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) { if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.add(builderForValue.build()); onChanged(); } else { metaOptimizationTargetBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder addMetaOptimizationTarget( int index, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) { if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.add(index, builderForValue.build()); onChanged(); } else { metaOptimizationTargetBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder addAllMetaOptimizationTarget( java.lang.Iterable values) { if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, metaOptimizationTarget_); onChanged(); } else { metaOptimizationTargetBuilder_.addAllMessages(values); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder clearMetaOptimizationTarget() { if (metaOptimizationTargetBuilder_ == null) { metaOptimizationTarget_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { metaOptimizationTargetBuilder_.clear(); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public Builder removeMetaOptimizationTarget(int index) { if (metaOptimizationTargetBuilder_ == null) { ensureMetaOptimizationTargetIsMutable(); metaOptimizationTarget_.remove(index); onChanged(); } else { metaOptimizationTargetBuilder_.remove(index); } return this; } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder getMetaOptimizationTargetBuilder( int index) { return getMetaOptimizationTargetFieldBuilder().getBuilder(index); } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder getMetaOptimizationTargetOrBuilder( int index) { if (metaOptimizationTargetBuilder_ == null) { return metaOptimizationTarget_.get(index); } else { return metaOptimizationTargetBuilder_.getMessageOrBuilder(index); } } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public java.util.List getMetaOptimizationTargetOrBuilderList() { if (metaOptimizationTargetBuilder_ != null) { return metaOptimizationTargetBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(metaOptimizationTarget_); } } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder addMetaOptimizationTargetBuilder() { return getMetaOptimizationTargetFieldBuilder().addBuilder( org.tensorflow.metadata.v0.MetaOptimizationTarget.getDefaultInstance()); } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder addMetaOptimizationTargetBuilder( int index) { return getMetaOptimizationTargetFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.MetaOptimizationTarget.getDefaultInstance()); } /** *
     * The target used for meta-optimization. This is used to compare multiple
     * solutions for this problem. For example, if two solutions have different
     * candidates, a tuning tool can use meta_optimization_target to decide which
     * candidate performs the best.
     * A repeated meta-optimization target implies the weighted sum of the
     * meta_optimization targets of any non-thresholded metrics.
     * 
* * repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7; */ public java.util.List getMetaOptimizationTargetBuilderList() { return getMetaOptimizationTargetFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder> getMetaOptimizationTargetFieldBuilder() { if (metaOptimizationTargetBuilder_ == null) { metaOptimizationTargetBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder>( metaOptimizationTarget_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); metaOptimizationTarget_ = null; } return metaOptimizationTargetBuilder_; } private boolean multiObjective_ ; /** * bool multi_objective = 8 [deprecated = true]; * @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated. * See tensorflow_metadata/proto/v0/problem_statement.proto;l=356 * @return The multiObjective. */ @java.lang.Override @java.lang.Deprecated public boolean getMultiObjective() { return multiObjective_; } /** * bool multi_objective = 8 [deprecated = true]; * @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated. * See tensorflow_metadata/proto/v0/problem_statement.proto;l=356 * @param value The multiObjective to set. * @return This builder for chaining. */ @java.lang.Deprecated public Builder setMultiObjective(boolean value) { multiObjective_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** * bool multi_objective = 8 [deprecated = true]; * @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated. * See tensorflow_metadata/proto/v0/problem_statement.proto;l=356 * @return This builder for chaining. */ @java.lang.Deprecated public Builder clearMultiObjective() { bitField0_ = (bitField0_ & ~0x00000010); multiObjective_ = false; onChanged(); return this; } private java.util.List tasks_ = java.util.Collections.emptyList(); private void ensureTasksIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { tasks_ = new java.util.ArrayList(tasks_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder> tasksBuilder_; /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public java.util.List getTasksList() { if (tasksBuilder_ == null) { return java.util.Collections.unmodifiableList(tasks_); } else { return tasksBuilder_.getMessageList(); } } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public int getTasksCount() { if (tasksBuilder_ == null) { return tasks_.size(); } else { return tasksBuilder_.getCount(); } } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public org.tensorflow.metadata.v0.Task getTasks(int index) { if (tasksBuilder_ == null) { return tasks_.get(index); } else { return tasksBuilder_.getMessage(index); } } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder setTasks( int index, org.tensorflow.metadata.v0.Task value) { if (tasksBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTasksIsMutable(); tasks_.set(index, value); onChanged(); } else { tasksBuilder_.setMessage(index, value); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder setTasks( int index, org.tensorflow.metadata.v0.Task.Builder builderForValue) { if (tasksBuilder_ == null) { ensureTasksIsMutable(); tasks_.set(index, builderForValue.build()); onChanged(); } else { tasksBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder addTasks(org.tensorflow.metadata.v0.Task value) { if (tasksBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTasksIsMutable(); tasks_.add(value); onChanged(); } else { tasksBuilder_.addMessage(value); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder addTasks( int index, org.tensorflow.metadata.v0.Task value) { if (tasksBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTasksIsMutable(); tasks_.add(index, value); onChanged(); } else { tasksBuilder_.addMessage(index, value); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder addTasks( org.tensorflow.metadata.v0.Task.Builder builderForValue) { if (tasksBuilder_ == null) { ensureTasksIsMutable(); tasks_.add(builderForValue.build()); onChanged(); } else { tasksBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder addTasks( int index, org.tensorflow.metadata.v0.Task.Builder builderForValue) { if (tasksBuilder_ == null) { ensureTasksIsMutable(); tasks_.add(index, builderForValue.build()); onChanged(); } else { tasksBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder addAllTasks( java.lang.Iterable values) { if (tasksBuilder_ == null) { ensureTasksIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, tasks_); onChanged(); } else { tasksBuilder_.addAllMessages(values); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder clearTasks() { if (tasksBuilder_ == null) { tasks_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { tasksBuilder_.clear(); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public Builder removeTasks(int index) { if (tasksBuilder_ == null) { ensureTasksIsMutable(); tasks_.remove(index); onChanged(); } else { tasksBuilder_.remove(index); } return this; } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public org.tensorflow.metadata.v0.Task.Builder getTasksBuilder( int index) { return getTasksFieldBuilder().getBuilder(index); } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public org.tensorflow.metadata.v0.TaskOrBuilder getTasksOrBuilder( int index) { if (tasksBuilder_ == null) { return tasks_.get(index); } else { return tasksBuilder_.getMessageOrBuilder(index); } } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public java.util.List getTasksOrBuilderList() { if (tasksBuilder_ != null) { return tasksBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(tasks_); } } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public org.tensorflow.metadata.v0.Task.Builder addTasksBuilder() { return getTasksFieldBuilder().addBuilder( org.tensorflow.metadata.v0.Task.getDefaultInstance()); } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public org.tensorflow.metadata.v0.Task.Builder addTasksBuilder( int index) { return getTasksFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.Task.getDefaultInstance()); } /** *
     * Tasks for heads of the generated model. This field is repeated because some
     * models are multi-task models. Each task should have a unique name.
     * If you wish to directly optimize this problem statement, you need
     * to specify the objective in the task.
     * 
* * repeated .tensorflow.metadata.v0.Task tasks = 9; */ public java.util.List getTasksBuilderList() { return getTasksFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder> getTasksFieldBuilder() { if (tasksBuilder_ == null) { tasksBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder>( tasks_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); tasks_ = null; } return tasksBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.ProblemStatement) } // @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.ProblemStatement) private static final org.tensorflow.metadata.v0.ProblemStatement DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.ProblemStatement(); } public static org.tensorflow.metadata.v0.ProblemStatement getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ProblemStatement parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public org.tensorflow.metadata.v0.ProblemStatement getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy