org.tensorflow.metadata.v0.ProblemStatement Maven / Gradle / Ivy
The newest version!
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/problem_statement.proto
// Protobuf Java Version: 3.25.4
package org.tensorflow.metadata.v0;
/**
* Protobuf type {@code tensorflow.metadata.v0.ProblemStatement}
*/
public final class ProblemStatement extends
com.google.protobuf.GeneratedMessageV3 implements
// @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.ProblemStatement)
ProblemStatementOrBuilder {
private static final long serialVersionUID = 0L;
// Use ProblemStatement.newBuilder() to construct.
private ProblemStatement(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private ProblemStatement() {
description_ = "";
owner_ =
com.google.protobuf.LazyStringArrayList.emptyList();
environment_ = "";
metaOptimizationTarget_ = java.util.Collections.emptyList();
tasks_ = java.util.Collections.emptyList();
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(
UnusedPrivateParameter unused) {
return new ProblemStatement();
}
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.ProblemStatement.class, org.tensorflow.metadata.v0.ProblemStatement.Builder.class);
}
public static final int DESCRIPTION_FIELD_NUMBER = 2;
@SuppressWarnings("serial")
private volatile java.lang.Object description_ = "";
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @return The description.
*/
@java.lang.Override
public java.lang.String getDescription() {
java.lang.Object ref = description_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
description_ = s;
return s;
}
}
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @return The bytes for description.
*/
@java.lang.Override
public com.google.protobuf.ByteString
getDescriptionBytes() {
java.lang.Object ref = description_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
description_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int OWNER_FIELD_NUMBER = 3;
@SuppressWarnings("serial")
private com.google.protobuf.LazyStringArrayList owner_ =
com.google.protobuf.LazyStringArrayList.emptyList();
/**
* repeated string owner = 3;
* @return A list containing the owner.
*/
public com.google.protobuf.ProtocolStringList
getOwnerList() {
return owner_;
}
/**
* repeated string owner = 3;
* @return The count of owner.
*/
public int getOwnerCount() {
return owner_.size();
}
/**
* repeated string owner = 3;
* @param index The index of the element to return.
* @return The owner at the given index.
*/
public java.lang.String getOwner(int index) {
return owner_.get(index);
}
/**
* repeated string owner = 3;
* @param index The index of the value to return.
* @return The bytes of the owner at the given index.
*/
public com.google.protobuf.ByteString
getOwnerBytes(int index) {
return owner_.getByteString(index);
}
public static final int ENVIRONMENT_FIELD_NUMBER = 4;
@SuppressWarnings("serial")
private volatile java.lang.Object environment_ = "";
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @return The environment.
*/
@java.lang.Override
public java.lang.String getEnvironment() {
java.lang.Object ref = environment_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
environment_ = s;
return s;
}
}
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @return The bytes for environment.
*/
@java.lang.Override
public com.google.protobuf.ByteString
getEnvironmentBytes() {
java.lang.Object ref = environment_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
environment_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int META_OPTIMIZATION_TARGET_FIELD_NUMBER = 7;
@SuppressWarnings("serial")
private java.util.List metaOptimizationTarget_;
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
@java.lang.Override
public java.util.List getMetaOptimizationTargetList() {
return metaOptimizationTarget_;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
@java.lang.Override
public java.util.List extends org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder>
getMetaOptimizationTargetOrBuilderList() {
return metaOptimizationTarget_;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
@java.lang.Override
public int getMetaOptimizationTargetCount() {
return metaOptimizationTarget_.size();
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.MetaOptimizationTarget getMetaOptimizationTarget(int index) {
return metaOptimizationTarget_.get(index);
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder getMetaOptimizationTargetOrBuilder(
int index) {
return metaOptimizationTarget_.get(index);
}
public static final int MULTI_OBJECTIVE_FIELD_NUMBER = 8;
private boolean multiObjective_ = false;
/**
* bool multi_objective = 8 [deprecated = true];
* @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated.
* See tensorflow_metadata/proto/v0/problem_statement.proto;l=356
* @return The multiObjective.
*/
@java.lang.Override
@java.lang.Deprecated public boolean getMultiObjective() {
return multiObjective_;
}
public static final int TASKS_FIELD_NUMBER = 9;
@SuppressWarnings("serial")
private java.util.List tasks_;
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
@java.lang.Override
public java.util.List getTasksList() {
return tasks_;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
@java.lang.Override
public java.util.List extends org.tensorflow.metadata.v0.TaskOrBuilder>
getTasksOrBuilderList() {
return tasks_;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
@java.lang.Override
public int getTasksCount() {
return tasks_.size();
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.Task getTasks(int index) {
return tasks_.get(index);
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
@java.lang.Override
public org.tensorflow.metadata.v0.TaskOrBuilder getTasksOrBuilder(
int index) {
return tasks_.get(index);
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.IOException {
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(description_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 2, description_);
}
for (int i = 0; i < owner_.size(); i++) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 3, owner_.getRaw(i));
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(environment_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 4, environment_);
}
for (int i = 0; i < metaOptimizationTarget_.size(); i++) {
output.writeMessage(7, metaOptimizationTarget_.get(i));
}
if (multiObjective_ != false) {
output.writeBool(8, multiObjective_);
}
for (int i = 0; i < tasks_.size(); i++) {
output.writeMessage(9, tasks_.get(i));
}
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(description_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, description_);
}
{
int dataSize = 0;
for (int i = 0; i < owner_.size(); i++) {
dataSize += computeStringSizeNoTag(owner_.getRaw(i));
}
size += dataSize;
size += 1 * getOwnerList().size();
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(environment_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, environment_);
}
for (int i = 0; i < metaOptimizationTarget_.size(); i++) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(7, metaOptimizationTarget_.get(i));
}
if (multiObjective_ != false) {
size += com.google.protobuf.CodedOutputStream
.computeBoolSize(8, multiObjective_);
}
for (int i = 0; i < tasks_.size(); i++) {
size += com.google.protobuf.CodedOutputStream
.computeMessageSize(9, tasks_.get(i));
}
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof org.tensorflow.metadata.v0.ProblemStatement)) {
return super.equals(obj);
}
org.tensorflow.metadata.v0.ProblemStatement other = (org.tensorflow.metadata.v0.ProblemStatement) obj;
if (!getDescription()
.equals(other.getDescription())) return false;
if (!getOwnerList()
.equals(other.getOwnerList())) return false;
if (!getEnvironment()
.equals(other.getEnvironment())) return false;
if (!getMetaOptimizationTargetList()
.equals(other.getMetaOptimizationTargetList())) return false;
if (getMultiObjective()
!= other.getMultiObjective()) return false;
if (!getTasksList()
.equals(other.getTasksList())) return false;
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (37 * hash) + DESCRIPTION_FIELD_NUMBER;
hash = (53 * hash) + getDescription().hashCode();
if (getOwnerCount() > 0) {
hash = (37 * hash) + OWNER_FIELD_NUMBER;
hash = (53 * hash) + getOwnerList().hashCode();
}
hash = (37 * hash) + ENVIRONMENT_FIELD_NUMBER;
hash = (53 * hash) + getEnvironment().hashCode();
if (getMetaOptimizationTargetCount() > 0) {
hash = (37 * hash) + META_OPTIMIZATION_TARGET_FIELD_NUMBER;
hash = (53 * hash) + getMetaOptimizationTargetList().hashCode();
}
hash = (37 * hash) + MULTI_OBJECTIVE_FIELD_NUMBER;
hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean(
getMultiObjective());
if (getTasksCount() > 0) {
hash = (37 * hash) + TASKS_FIELD_NUMBER;
hash = (53 * hash) + getTasksList().hashCode();
}
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
java.nio.ByteBuffer data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
java.nio.ByteBuffer data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
byte[] data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseDelimitedFrom(java.io.InputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseDelimitedFrom(
java.io.InputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseDelimitedWithIOException(PARSER, input, extensionRegistry);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
com.google.protobuf.CodedInputStream input)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input);
}
public static org.tensorflow.metadata.v0.ProblemStatement parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3
.parseWithIOException(PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() { return newBuilder(); }
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(org.tensorflow.metadata.v0.ProblemStatement prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE
? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
* Protobuf type {@code tensorflow.metadata.v0.ProblemStatement}
*/
public static final class Builder extends
com.google.protobuf.GeneratedMessageV3.Builder implements
// @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.ProblemStatement)
org.tensorflow.metadata.v0.ProblemStatementOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor
getDescriptor() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor;
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_fieldAccessorTable
.ensureFieldAccessorsInitialized(
org.tensorflow.metadata.v0.ProblemStatement.class, org.tensorflow.metadata.v0.ProblemStatement.Builder.class);
}
// Construct using org.tensorflow.metadata.v0.ProblemStatement.newBuilder()
private Builder() {
}
private Builder(
com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
}
@java.lang.Override
public Builder clear() {
super.clear();
bitField0_ = 0;
description_ = "";
owner_ =
com.google.protobuf.LazyStringArrayList.emptyList();
environment_ = "";
if (metaOptimizationTargetBuilder_ == null) {
metaOptimizationTarget_ = java.util.Collections.emptyList();
} else {
metaOptimizationTarget_ = null;
metaOptimizationTargetBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000008);
multiObjective_ = false;
if (tasksBuilder_ == null) {
tasks_ = java.util.Collections.emptyList();
} else {
tasks_ = null;
tasksBuilder_.clear();
}
bitField0_ = (bitField0_ & ~0x00000020);
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor
getDescriptorForType() {
return org.tensorflow.metadata.v0.ProblemStatementOuterClass.internal_static_tensorflow_metadata_v0_ProblemStatement_descriptor;
}
@java.lang.Override
public org.tensorflow.metadata.v0.ProblemStatement getDefaultInstanceForType() {
return org.tensorflow.metadata.v0.ProblemStatement.getDefaultInstance();
}
@java.lang.Override
public org.tensorflow.metadata.v0.ProblemStatement build() {
org.tensorflow.metadata.v0.ProblemStatement result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public org.tensorflow.metadata.v0.ProblemStatement buildPartial() {
org.tensorflow.metadata.v0.ProblemStatement result = new org.tensorflow.metadata.v0.ProblemStatement(this);
buildPartialRepeatedFields(result);
if (bitField0_ != 0) { buildPartial0(result); }
onBuilt();
return result;
}
private void buildPartialRepeatedFields(org.tensorflow.metadata.v0.ProblemStatement result) {
if (metaOptimizationTargetBuilder_ == null) {
if (((bitField0_ & 0x00000008) != 0)) {
metaOptimizationTarget_ = java.util.Collections.unmodifiableList(metaOptimizationTarget_);
bitField0_ = (bitField0_ & ~0x00000008);
}
result.metaOptimizationTarget_ = metaOptimizationTarget_;
} else {
result.metaOptimizationTarget_ = metaOptimizationTargetBuilder_.build();
}
if (tasksBuilder_ == null) {
if (((bitField0_ & 0x00000020) != 0)) {
tasks_ = java.util.Collections.unmodifiableList(tasks_);
bitField0_ = (bitField0_ & ~0x00000020);
}
result.tasks_ = tasks_;
} else {
result.tasks_ = tasksBuilder_.build();
}
}
private void buildPartial0(org.tensorflow.metadata.v0.ProblemStatement result) {
int from_bitField0_ = bitField0_;
if (((from_bitField0_ & 0x00000001) != 0)) {
result.description_ = description_;
}
if (((from_bitField0_ & 0x00000002) != 0)) {
owner_.makeImmutable();
result.owner_ = owner_;
}
if (((from_bitField0_ & 0x00000004) != 0)) {
result.environment_ = environment_;
}
if (((from_bitField0_ & 0x00000010) != 0)) {
result.multiObjective_ = multiObjective_;
}
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(
com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(
com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field,
java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof org.tensorflow.metadata.v0.ProblemStatement) {
return mergeFrom((org.tensorflow.metadata.v0.ProblemStatement)other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(org.tensorflow.metadata.v0.ProblemStatement other) {
if (other == org.tensorflow.metadata.v0.ProblemStatement.getDefaultInstance()) return this;
if (!other.getDescription().isEmpty()) {
description_ = other.description_;
bitField0_ |= 0x00000001;
onChanged();
}
if (!other.owner_.isEmpty()) {
if (owner_.isEmpty()) {
owner_ = other.owner_;
bitField0_ |= 0x00000002;
} else {
ensureOwnerIsMutable();
owner_.addAll(other.owner_);
}
onChanged();
}
if (!other.getEnvironment().isEmpty()) {
environment_ = other.environment_;
bitField0_ |= 0x00000004;
onChanged();
}
if (metaOptimizationTargetBuilder_ == null) {
if (!other.metaOptimizationTarget_.isEmpty()) {
if (metaOptimizationTarget_.isEmpty()) {
metaOptimizationTarget_ = other.metaOptimizationTarget_;
bitField0_ = (bitField0_ & ~0x00000008);
} else {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.addAll(other.metaOptimizationTarget_);
}
onChanged();
}
} else {
if (!other.metaOptimizationTarget_.isEmpty()) {
if (metaOptimizationTargetBuilder_.isEmpty()) {
metaOptimizationTargetBuilder_.dispose();
metaOptimizationTargetBuilder_ = null;
metaOptimizationTarget_ = other.metaOptimizationTarget_;
bitField0_ = (bitField0_ & ~0x00000008);
metaOptimizationTargetBuilder_ =
com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ?
getMetaOptimizationTargetFieldBuilder() : null;
} else {
metaOptimizationTargetBuilder_.addAllMessages(other.metaOptimizationTarget_);
}
}
}
if (other.getMultiObjective() != false) {
setMultiObjective(other.getMultiObjective());
}
if (tasksBuilder_ == null) {
if (!other.tasks_.isEmpty()) {
if (tasks_.isEmpty()) {
tasks_ = other.tasks_;
bitField0_ = (bitField0_ & ~0x00000020);
} else {
ensureTasksIsMutable();
tasks_.addAll(other.tasks_);
}
onChanged();
}
} else {
if (!other.tasks_.isEmpty()) {
if (tasksBuilder_.isEmpty()) {
tasksBuilder_.dispose();
tasksBuilder_ = null;
tasks_ = other.tasks_;
bitField0_ = (bitField0_ & ~0x00000020);
tasksBuilder_ =
com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ?
getTasksFieldBuilder() : null;
} else {
tasksBuilder_.addAllMessages(other.tasks_);
}
}
}
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 18: {
description_ = input.readStringRequireUtf8();
bitField0_ |= 0x00000001;
break;
} // case 18
case 26: {
java.lang.String s = input.readStringRequireUtf8();
ensureOwnerIsMutable();
owner_.add(s);
break;
} // case 26
case 34: {
environment_ = input.readStringRequireUtf8();
bitField0_ |= 0x00000004;
break;
} // case 34
case 58: {
org.tensorflow.metadata.v0.MetaOptimizationTarget m =
input.readMessage(
org.tensorflow.metadata.v0.MetaOptimizationTarget.parser(),
extensionRegistry);
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.add(m);
} else {
metaOptimizationTargetBuilder_.addMessage(m);
}
break;
} // case 58
case 64: {
multiObjective_ = input.readBool();
bitField0_ |= 0x00000010;
break;
} // case 64
case 74: {
org.tensorflow.metadata.v0.Task m =
input.readMessage(
org.tensorflow.metadata.v0.Task.parser(),
extensionRegistry);
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
tasks_.add(m);
} else {
tasksBuilder_.addMessage(m);
}
break;
} // case 74
default: {
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
private int bitField0_;
private java.lang.Object description_ = "";
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @return The description.
*/
public java.lang.String getDescription() {
java.lang.Object ref = description_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
description_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @return The bytes for description.
*/
public com.google.protobuf.ByteString
getDescriptionBytes() {
java.lang.Object ref = description_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
description_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @param value The description to set.
* @return This builder for chaining.
*/
public Builder setDescription(
java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
description_ = value;
bitField0_ |= 0x00000001;
onChanged();
return this;
}
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @return This builder for chaining.
*/
public Builder clearDescription() {
description_ = getDefaultInstance().getDescription();
bitField0_ = (bitField0_ & ~0x00000001);
onChanged();
return this;
}
/**
*
* Description of the problem statement. For example, should describe how
* the problem statement was arrived at: what experiments were run, what
* side-by-sides were considered.
*
*
* string description = 2;
* @param value The bytes for description to set.
* @return This builder for chaining.
*/
public Builder setDescriptionBytes(
com.google.protobuf.ByteString value) {
if (value == null) { throw new NullPointerException(); }
checkByteStringIsUtf8(value);
description_ = value;
bitField0_ |= 0x00000001;
onChanged();
return this;
}
private com.google.protobuf.LazyStringArrayList owner_ =
com.google.protobuf.LazyStringArrayList.emptyList();
private void ensureOwnerIsMutable() {
if (!owner_.isModifiable()) {
owner_ = new com.google.protobuf.LazyStringArrayList(owner_);
}
bitField0_ |= 0x00000002;
}
/**
* repeated string owner = 3;
* @return A list containing the owner.
*/
public com.google.protobuf.ProtocolStringList
getOwnerList() {
owner_.makeImmutable();
return owner_;
}
/**
* repeated string owner = 3;
* @return The count of owner.
*/
public int getOwnerCount() {
return owner_.size();
}
/**
* repeated string owner = 3;
* @param index The index of the element to return.
* @return The owner at the given index.
*/
public java.lang.String getOwner(int index) {
return owner_.get(index);
}
/**
* repeated string owner = 3;
* @param index The index of the value to return.
* @return The bytes of the owner at the given index.
*/
public com.google.protobuf.ByteString
getOwnerBytes(int index) {
return owner_.getByteString(index);
}
/**
* repeated string owner = 3;
* @param index The index to set the value at.
* @param value The owner to set.
* @return This builder for chaining.
*/
public Builder setOwner(
int index, java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
ensureOwnerIsMutable();
owner_.set(index, value);
bitField0_ |= 0x00000002;
onChanged();
return this;
}
/**
* repeated string owner = 3;
* @param value The owner to add.
* @return This builder for chaining.
*/
public Builder addOwner(
java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
ensureOwnerIsMutable();
owner_.add(value);
bitField0_ |= 0x00000002;
onChanged();
return this;
}
/**
* repeated string owner = 3;
* @param values The owner to add.
* @return This builder for chaining.
*/
public Builder addAllOwner(
java.lang.Iterable values) {
ensureOwnerIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, owner_);
bitField0_ |= 0x00000002;
onChanged();
return this;
}
/**
* repeated string owner = 3;
* @return This builder for chaining.
*/
public Builder clearOwner() {
owner_ =
com.google.protobuf.LazyStringArrayList.emptyList();
bitField0_ = (bitField0_ & ~0x00000002);;
onChanged();
return this;
}
/**
* repeated string owner = 3;
* @param value The bytes of the owner to add.
* @return This builder for chaining.
*/
public Builder addOwnerBytes(
com.google.protobuf.ByteString value) {
if (value == null) { throw new NullPointerException(); }
checkByteStringIsUtf8(value);
ensureOwnerIsMutable();
owner_.add(value);
bitField0_ |= 0x00000002;
onChanged();
return this;
}
private java.lang.Object environment_ = "";
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @return The environment.
*/
public java.lang.String getEnvironment() {
java.lang.Object ref = environment_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs =
(com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
environment_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @return The bytes for environment.
*/
public com.google.protobuf.ByteString
getEnvironmentBytes() {
java.lang.Object ref = environment_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8(
(java.lang.String) ref);
environment_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @param value The environment to set.
* @return This builder for chaining.
*/
public Builder setEnvironment(
java.lang.String value) {
if (value == null) { throw new NullPointerException(); }
environment_ = value;
bitField0_ |= 0x00000004;
onChanged();
return this;
}
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @return This builder for chaining.
*/
public Builder clearEnvironment() {
environment_ = getDefaultInstance().getEnvironment();
bitField0_ = (bitField0_ & ~0x00000004);
onChanged();
return this;
}
/**
*
* The environment of the ProblemStatement (optional). Specifies an
* environment string in the SchemaProto.
*
*
* string environment = 4;
* @param value The bytes for environment to set.
* @return This builder for chaining.
*/
public Builder setEnvironmentBytes(
com.google.protobuf.ByteString value) {
if (value == null) { throw new NullPointerException(); }
checkByteStringIsUtf8(value);
environment_ = value;
bitField0_ |= 0x00000004;
onChanged();
return this;
}
private java.util.List metaOptimizationTarget_ =
java.util.Collections.emptyList();
private void ensureMetaOptimizationTargetIsMutable() {
if (!((bitField0_ & 0x00000008) != 0)) {
metaOptimizationTarget_ = new java.util.ArrayList(metaOptimizationTarget_);
bitField0_ |= 0x00000008;
}
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder> metaOptimizationTargetBuilder_;
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public java.util.List getMetaOptimizationTargetList() {
if (metaOptimizationTargetBuilder_ == null) {
return java.util.Collections.unmodifiableList(metaOptimizationTarget_);
} else {
return metaOptimizationTargetBuilder_.getMessageList();
}
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public int getMetaOptimizationTargetCount() {
if (metaOptimizationTargetBuilder_ == null) {
return metaOptimizationTarget_.size();
} else {
return metaOptimizationTargetBuilder_.getCount();
}
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public org.tensorflow.metadata.v0.MetaOptimizationTarget getMetaOptimizationTarget(int index) {
if (metaOptimizationTargetBuilder_ == null) {
return metaOptimizationTarget_.get(index);
} else {
return metaOptimizationTargetBuilder_.getMessage(index);
}
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder setMetaOptimizationTarget(
int index, org.tensorflow.metadata.v0.MetaOptimizationTarget value) {
if (metaOptimizationTargetBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.set(index, value);
onChanged();
} else {
metaOptimizationTargetBuilder_.setMessage(index, value);
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder setMetaOptimizationTarget(
int index, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) {
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.set(index, builderForValue.build());
onChanged();
} else {
metaOptimizationTargetBuilder_.setMessage(index, builderForValue.build());
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder addMetaOptimizationTarget(org.tensorflow.metadata.v0.MetaOptimizationTarget value) {
if (metaOptimizationTargetBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.add(value);
onChanged();
} else {
metaOptimizationTargetBuilder_.addMessage(value);
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder addMetaOptimizationTarget(
int index, org.tensorflow.metadata.v0.MetaOptimizationTarget value) {
if (metaOptimizationTargetBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.add(index, value);
onChanged();
} else {
metaOptimizationTargetBuilder_.addMessage(index, value);
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder addMetaOptimizationTarget(
org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) {
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.add(builderForValue.build());
onChanged();
} else {
metaOptimizationTargetBuilder_.addMessage(builderForValue.build());
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder addMetaOptimizationTarget(
int index, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder builderForValue) {
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.add(index, builderForValue.build());
onChanged();
} else {
metaOptimizationTargetBuilder_.addMessage(index, builderForValue.build());
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder addAllMetaOptimizationTarget(
java.lang.Iterable extends org.tensorflow.metadata.v0.MetaOptimizationTarget> values) {
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, metaOptimizationTarget_);
onChanged();
} else {
metaOptimizationTargetBuilder_.addAllMessages(values);
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder clearMetaOptimizationTarget() {
if (metaOptimizationTargetBuilder_ == null) {
metaOptimizationTarget_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000008);
onChanged();
} else {
metaOptimizationTargetBuilder_.clear();
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public Builder removeMetaOptimizationTarget(int index) {
if (metaOptimizationTargetBuilder_ == null) {
ensureMetaOptimizationTargetIsMutable();
metaOptimizationTarget_.remove(index);
onChanged();
} else {
metaOptimizationTargetBuilder_.remove(index);
}
return this;
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder getMetaOptimizationTargetBuilder(
int index) {
return getMetaOptimizationTargetFieldBuilder().getBuilder(index);
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder getMetaOptimizationTargetOrBuilder(
int index) {
if (metaOptimizationTargetBuilder_ == null) {
return metaOptimizationTarget_.get(index); } else {
return metaOptimizationTargetBuilder_.getMessageOrBuilder(index);
}
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public java.util.List extends org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder>
getMetaOptimizationTargetOrBuilderList() {
if (metaOptimizationTargetBuilder_ != null) {
return metaOptimizationTargetBuilder_.getMessageOrBuilderList();
} else {
return java.util.Collections.unmodifiableList(metaOptimizationTarget_);
}
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder addMetaOptimizationTargetBuilder() {
return getMetaOptimizationTargetFieldBuilder().addBuilder(
org.tensorflow.metadata.v0.MetaOptimizationTarget.getDefaultInstance());
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder addMetaOptimizationTargetBuilder(
int index) {
return getMetaOptimizationTargetFieldBuilder().addBuilder(
index, org.tensorflow.metadata.v0.MetaOptimizationTarget.getDefaultInstance());
}
/**
*
* The target used for meta-optimization. This is used to compare multiple
* solutions for this problem. For example, if two solutions have different
* candidates, a tuning tool can use meta_optimization_target to decide which
* candidate performs the best.
* A repeated meta-optimization target implies the weighted sum of the
* meta_optimization targets of any non-thresholded metrics.
*
*
* repeated .tensorflow.metadata.v0.MetaOptimizationTarget meta_optimization_target = 7;
*/
public java.util.List
getMetaOptimizationTargetBuilderList() {
return getMetaOptimizationTargetFieldBuilder().getBuilderList();
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder>
getMetaOptimizationTargetFieldBuilder() {
if (metaOptimizationTargetBuilder_ == null) {
metaOptimizationTargetBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.MetaOptimizationTarget, org.tensorflow.metadata.v0.MetaOptimizationTarget.Builder, org.tensorflow.metadata.v0.MetaOptimizationTargetOrBuilder>(
metaOptimizationTarget_,
((bitField0_ & 0x00000008) != 0),
getParentForChildren(),
isClean());
metaOptimizationTarget_ = null;
}
return metaOptimizationTargetBuilder_;
}
private boolean multiObjective_ ;
/**
* bool multi_objective = 8 [deprecated = true];
* @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated.
* See tensorflow_metadata/proto/v0/problem_statement.proto;l=356
* @return The multiObjective.
*/
@java.lang.Override
@java.lang.Deprecated public boolean getMultiObjective() {
return multiObjective_;
}
/**
* bool multi_objective = 8 [deprecated = true];
* @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated.
* See tensorflow_metadata/proto/v0/problem_statement.proto;l=356
* @param value The multiObjective to set.
* @return This builder for chaining.
*/
@java.lang.Deprecated public Builder setMultiObjective(boolean value) {
multiObjective_ = value;
bitField0_ |= 0x00000010;
onChanged();
return this;
}
/**
* bool multi_objective = 8 [deprecated = true];
* @deprecated tensorflow.metadata.v0.ProblemStatement.multi_objective is deprecated.
* See tensorflow_metadata/proto/v0/problem_statement.proto;l=356
* @return This builder for chaining.
*/
@java.lang.Deprecated public Builder clearMultiObjective() {
bitField0_ = (bitField0_ & ~0x00000010);
multiObjective_ = false;
onChanged();
return this;
}
private java.util.List tasks_ =
java.util.Collections.emptyList();
private void ensureTasksIsMutable() {
if (!((bitField0_ & 0x00000020) != 0)) {
tasks_ = new java.util.ArrayList(tasks_);
bitField0_ |= 0x00000020;
}
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder> tasksBuilder_;
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public java.util.List getTasksList() {
if (tasksBuilder_ == null) {
return java.util.Collections.unmodifiableList(tasks_);
} else {
return tasksBuilder_.getMessageList();
}
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public int getTasksCount() {
if (tasksBuilder_ == null) {
return tasks_.size();
} else {
return tasksBuilder_.getCount();
}
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public org.tensorflow.metadata.v0.Task getTasks(int index) {
if (tasksBuilder_ == null) {
return tasks_.get(index);
} else {
return tasksBuilder_.getMessage(index);
}
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder setTasks(
int index, org.tensorflow.metadata.v0.Task value) {
if (tasksBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureTasksIsMutable();
tasks_.set(index, value);
onChanged();
} else {
tasksBuilder_.setMessage(index, value);
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder setTasks(
int index, org.tensorflow.metadata.v0.Task.Builder builderForValue) {
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
tasks_.set(index, builderForValue.build());
onChanged();
} else {
tasksBuilder_.setMessage(index, builderForValue.build());
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder addTasks(org.tensorflow.metadata.v0.Task value) {
if (tasksBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureTasksIsMutable();
tasks_.add(value);
onChanged();
} else {
tasksBuilder_.addMessage(value);
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder addTasks(
int index, org.tensorflow.metadata.v0.Task value) {
if (tasksBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
ensureTasksIsMutable();
tasks_.add(index, value);
onChanged();
} else {
tasksBuilder_.addMessage(index, value);
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder addTasks(
org.tensorflow.metadata.v0.Task.Builder builderForValue) {
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
tasks_.add(builderForValue.build());
onChanged();
} else {
tasksBuilder_.addMessage(builderForValue.build());
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder addTasks(
int index, org.tensorflow.metadata.v0.Task.Builder builderForValue) {
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
tasks_.add(index, builderForValue.build());
onChanged();
} else {
tasksBuilder_.addMessage(index, builderForValue.build());
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder addAllTasks(
java.lang.Iterable extends org.tensorflow.metadata.v0.Task> values) {
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
com.google.protobuf.AbstractMessageLite.Builder.addAll(
values, tasks_);
onChanged();
} else {
tasksBuilder_.addAllMessages(values);
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder clearTasks() {
if (tasksBuilder_ == null) {
tasks_ = java.util.Collections.emptyList();
bitField0_ = (bitField0_ & ~0x00000020);
onChanged();
} else {
tasksBuilder_.clear();
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public Builder removeTasks(int index) {
if (tasksBuilder_ == null) {
ensureTasksIsMutable();
tasks_.remove(index);
onChanged();
} else {
tasksBuilder_.remove(index);
}
return this;
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public org.tensorflow.metadata.v0.Task.Builder getTasksBuilder(
int index) {
return getTasksFieldBuilder().getBuilder(index);
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public org.tensorflow.metadata.v0.TaskOrBuilder getTasksOrBuilder(
int index) {
if (tasksBuilder_ == null) {
return tasks_.get(index); } else {
return tasksBuilder_.getMessageOrBuilder(index);
}
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public java.util.List extends org.tensorflow.metadata.v0.TaskOrBuilder>
getTasksOrBuilderList() {
if (tasksBuilder_ != null) {
return tasksBuilder_.getMessageOrBuilderList();
} else {
return java.util.Collections.unmodifiableList(tasks_);
}
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public org.tensorflow.metadata.v0.Task.Builder addTasksBuilder() {
return getTasksFieldBuilder().addBuilder(
org.tensorflow.metadata.v0.Task.getDefaultInstance());
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public org.tensorflow.metadata.v0.Task.Builder addTasksBuilder(
int index) {
return getTasksFieldBuilder().addBuilder(
index, org.tensorflow.metadata.v0.Task.getDefaultInstance());
}
/**
*
* Tasks for heads of the generated model. This field is repeated because some
* models are multi-task models. Each task should have a unique name.
* If you wish to directly optimize this problem statement, you need
* to specify the objective in the task.
*
*
* repeated .tensorflow.metadata.v0.Task tasks = 9;
*/
public java.util.List
getTasksBuilderList() {
return getTasksFieldBuilder().getBuilderList();
}
private com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder>
getTasksFieldBuilder() {
if (tasksBuilder_ == null) {
tasksBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3<
org.tensorflow.metadata.v0.Task, org.tensorflow.metadata.v0.Task.Builder, org.tensorflow.metadata.v0.TaskOrBuilder>(
tasks_,
((bitField0_ & 0x00000020) != 0),
getParentForChildren(),
isClean());
tasks_ = null;
}
return tasksBuilder_;
}
@java.lang.Override
public final Builder setUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.ProblemStatement)
}
// @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.ProblemStatement)
private static final org.tensorflow.metadata.v0.ProblemStatement DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.ProblemStatement();
}
public static org.tensorflow.metadata.v0.ProblemStatement getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser
PARSER = new com.google.protobuf.AbstractParser() {
@java.lang.Override
public ProblemStatement parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public org.tensorflow.metadata.v0.ProblemStatement getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy