All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.metadata.v0.Schema Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/schema.proto

// Protobuf Java Version: 3.25.4
package org.tensorflow.metadata.v0;

/**
 * 
 *
 * Message to represent schema information.
 * NextID: 15
 * 
* * Protobuf type {@code tensorflow.metadata.v0.Schema} */ public final class Schema extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:tensorflow.metadata.v0.Schema) SchemaOrBuilder { private static final long serialVersionUID = 0L; // Use Schema.newBuilder() to construct. private Schema(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Schema() { feature_ = java.util.Collections.emptyList(); sparseFeature_ = java.util.Collections.emptyList(); weightedFeature_ = java.util.Collections.emptyList(); stringDomain_ = java.util.Collections.emptyList(); floatDomain_ = java.util.Collections.emptyList(); intDomain_ = java.util.Collections.emptyList(); defaultEnvironment_ = com.google.protobuf.LazyStringArrayList.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { return new Schema(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_descriptor; } @SuppressWarnings({"rawtypes"}) @java.lang.Override protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 13: return internalGetTensorRepresentationGroup(); default: throw new RuntimeException( "Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.Schema.class, org.tensorflow.metadata.v0.Schema.Builder.class); } private int bitField0_; public static final int FEATURE_FIELD_NUMBER = 1; @SuppressWarnings("serial") private java.util.List feature_; /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ @java.lang.Override public java.util.List getFeatureList() { return feature_; } /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ @java.lang.Override public java.util.List getFeatureOrBuilderList() { return feature_; } /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ @java.lang.Override public int getFeatureCount() { return feature_.size(); } /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ @java.lang.Override public org.tensorflow.metadata.v0.Feature getFeature(int index) { return feature_.get(index); } /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ @java.lang.Override public org.tensorflow.metadata.v0.FeatureOrBuilder getFeatureOrBuilder( int index) { return feature_.get(index); } public static final int SPARSE_FEATURE_FIELD_NUMBER = 6; @SuppressWarnings("serial") private java.util.List sparseFeature_; /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ @java.lang.Override public java.util.List getSparseFeatureList() { return sparseFeature_; } /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ @java.lang.Override public java.util.List getSparseFeatureOrBuilderList() { return sparseFeature_; } /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ @java.lang.Override public int getSparseFeatureCount() { return sparseFeature_.size(); } /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ @java.lang.Override public org.tensorflow.metadata.v0.SparseFeature getSparseFeature(int index) { return sparseFeature_.get(index); } /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ @java.lang.Override public org.tensorflow.metadata.v0.SparseFeatureOrBuilder getSparseFeatureOrBuilder( int index) { return sparseFeature_.get(index); } public static final int WEIGHTED_FEATURE_FIELD_NUMBER = 12; @SuppressWarnings("serial") private java.util.List weightedFeature_; /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ @java.lang.Override public java.util.List getWeightedFeatureList() { return weightedFeature_; } /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ @java.lang.Override public java.util.List getWeightedFeatureOrBuilderList() { return weightedFeature_; } /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ @java.lang.Override public int getWeightedFeatureCount() { return weightedFeature_.size(); } /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ @java.lang.Override public org.tensorflow.metadata.v0.WeightedFeature getWeightedFeature(int index) { return weightedFeature_.get(index); } /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ @java.lang.Override public org.tensorflow.metadata.v0.WeightedFeatureOrBuilder getWeightedFeatureOrBuilder( int index) { return weightedFeature_.get(index); } public static final int STRING_DOMAIN_FIELD_NUMBER = 4; @SuppressWarnings("serial") private java.util.List stringDomain_; /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ @java.lang.Override public java.util.List getStringDomainList() { return stringDomain_; } /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ @java.lang.Override public java.util.List getStringDomainOrBuilderList() { return stringDomain_; } /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ @java.lang.Override public int getStringDomainCount() { return stringDomain_.size(); } /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ @java.lang.Override public org.tensorflow.metadata.v0.StringDomain getStringDomain(int index) { return stringDomain_.get(index); } /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ @java.lang.Override public org.tensorflow.metadata.v0.StringDomainOrBuilder getStringDomainOrBuilder( int index) { return stringDomain_.get(index); } public static final int FLOAT_DOMAIN_FIELD_NUMBER = 9; @SuppressWarnings("serial") private java.util.List floatDomain_; /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ @java.lang.Override public java.util.List getFloatDomainList() { return floatDomain_; } /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ @java.lang.Override public java.util.List getFloatDomainOrBuilderList() { return floatDomain_; } /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ @java.lang.Override public int getFloatDomainCount() { return floatDomain_.size(); } /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ @java.lang.Override public org.tensorflow.metadata.v0.FloatDomain getFloatDomain(int index) { return floatDomain_.get(index); } /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ @java.lang.Override public org.tensorflow.metadata.v0.FloatDomainOrBuilder getFloatDomainOrBuilder( int index) { return floatDomain_.get(index); } public static final int INT_DOMAIN_FIELD_NUMBER = 10; @SuppressWarnings("serial") private java.util.List intDomain_; /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ @java.lang.Override public java.util.List getIntDomainList() { return intDomain_; } /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ @java.lang.Override public java.util.List getIntDomainOrBuilderList() { return intDomain_; } /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ @java.lang.Override public int getIntDomainCount() { return intDomain_.size(); } /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ @java.lang.Override public org.tensorflow.metadata.v0.IntDomain getIntDomain(int index) { return intDomain_.get(index); } /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ @java.lang.Override public org.tensorflow.metadata.v0.IntDomainOrBuilder getIntDomainOrBuilder( int index) { return intDomain_.get(index); } public static final int DEFAULT_ENVIRONMENT_FIELD_NUMBER = 5; @SuppressWarnings("serial") private com.google.protobuf.LazyStringArrayList defaultEnvironment_ = com.google.protobuf.LazyStringArrayList.emptyList(); /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @return A list containing the defaultEnvironment. */ public com.google.protobuf.ProtocolStringList getDefaultEnvironmentList() { return defaultEnvironment_; } /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @return The count of defaultEnvironment. */ public int getDefaultEnvironmentCount() { return defaultEnvironment_.size(); } /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @param index The index of the element to return. * @return The defaultEnvironment at the given index. */ public java.lang.String getDefaultEnvironment(int index) { return defaultEnvironment_.get(index); } /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @param index The index of the value to return. * @return The bytes of the defaultEnvironment at the given index. */ public com.google.protobuf.ByteString getDefaultEnvironmentBytes(int index) { return defaultEnvironment_.getByteString(index); } public static final int REPRESENT_VARIABLE_LENGTH_AS_RAGGED_FIELD_NUMBER = 14; private boolean representVariableLengthAsRagged_ = false; /** *
   * Whether to represent variable length features as RaggedTensors. By default
   * they are represented as ragged left-alighned SparseTensors. RaggedTensor
   * representation is more memory efficient. Therefore, turning this on will
   * likely yield data processing performance improvement.
   * Experimental and may be subject to change.
   * 
* * optional bool represent_variable_length_as_ragged = 14; * @return Whether the representVariableLengthAsRagged field is set. */ @java.lang.Override public boolean hasRepresentVariableLengthAsRagged() { return ((bitField0_ & 0x00000001) != 0); } /** *
   * Whether to represent variable length features as RaggedTensors. By default
   * they are represented as ragged left-alighned SparseTensors. RaggedTensor
   * representation is more memory efficient. Therefore, turning this on will
   * likely yield data processing performance improvement.
   * Experimental and may be subject to change.
   * 
* * optional bool represent_variable_length_as_ragged = 14; * @return The representVariableLengthAsRagged. */ @java.lang.Override public boolean getRepresentVariableLengthAsRagged() { return representVariableLengthAsRagged_; } public static final int ANNOTATION_FIELD_NUMBER = 8; private org.tensorflow.metadata.v0.Annotation annotation_; /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return Whether the annotation field is set. */ @java.lang.Override public boolean hasAnnotation() { return ((bitField0_ & 0x00000002) != 0); } /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return The annotation. */ @java.lang.Override public org.tensorflow.metadata.v0.Annotation getAnnotation() { return annotation_ == null ? org.tensorflow.metadata.v0.Annotation.getDefaultInstance() : annotation_; } /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ @java.lang.Override public org.tensorflow.metadata.v0.AnnotationOrBuilder getAnnotationOrBuilder() { return annotation_ == null ? org.tensorflow.metadata.v0.Annotation.getDefaultInstance() : annotation_; } public static final int DATASET_CONSTRAINTS_FIELD_NUMBER = 11; private org.tensorflow.metadata.v0.DatasetConstraints datasetConstraints_; /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return Whether the datasetConstraints field is set. */ @java.lang.Override public boolean hasDatasetConstraints() { return ((bitField0_ & 0x00000004) != 0); } /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return The datasetConstraints. */ @java.lang.Override public org.tensorflow.metadata.v0.DatasetConstraints getDatasetConstraints() { return datasetConstraints_ == null ? org.tensorflow.metadata.v0.DatasetConstraints.getDefaultInstance() : datasetConstraints_; } /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ @java.lang.Override public org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder getDatasetConstraintsOrBuilder() { return datasetConstraints_ == null ? org.tensorflow.metadata.v0.DatasetConstraints.getDefaultInstance() : datasetConstraints_; } public static final int TENSOR_REPRESENTATION_GROUP_FIELD_NUMBER = 13; private static final class TensorRepresentationGroupDefaultEntryHolder { static final com.google.protobuf.MapEntry< java.lang.String, org.tensorflow.metadata.v0.TensorRepresentationGroup> defaultEntry = com.google.protobuf.MapEntry .newDefaultInstance( org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_TensorRepresentationGroupEntry_descriptor, com.google.protobuf.WireFormat.FieldType.STRING, "", com.google.protobuf.WireFormat.FieldType.MESSAGE, org.tensorflow.metadata.v0.TensorRepresentationGroup.getDefaultInstance()); } @SuppressWarnings("serial") private com.google.protobuf.MapField< java.lang.String, org.tensorflow.metadata.v0.TensorRepresentationGroup> tensorRepresentationGroup_; private com.google.protobuf.MapField internalGetTensorRepresentationGroup() { if (tensorRepresentationGroup_ == null) { return com.google.protobuf.MapField.emptyMapField( TensorRepresentationGroupDefaultEntryHolder.defaultEntry); } return tensorRepresentationGroup_; } public int getTensorRepresentationGroupCount() { return internalGetTensorRepresentationGroup().getMap().size(); } /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public boolean containsTensorRepresentationGroup( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetTensorRepresentationGroup().getMap().containsKey(key); } /** * Use {@link #getTensorRepresentationGroupMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getTensorRepresentationGroup() { return getTensorRepresentationGroupMap(); } /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public java.util.Map getTensorRepresentationGroupMap() { return internalGetTensorRepresentationGroup().getMap(); } /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrDefault( java.lang.String key, /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTensorRepresentationGroup().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrThrow( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTensorRepresentationGroup().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < feature_.size(); i++) { output.writeMessage(1, feature_.get(i)); } for (int i = 0; i < stringDomain_.size(); i++) { output.writeMessage(4, stringDomain_.get(i)); } for (int i = 0; i < defaultEnvironment_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 5, defaultEnvironment_.getRaw(i)); } for (int i = 0; i < sparseFeature_.size(); i++) { output.writeMessage(6, sparseFeature_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { output.writeMessage(8, getAnnotation()); } for (int i = 0; i < floatDomain_.size(); i++) { output.writeMessage(9, floatDomain_.get(i)); } for (int i = 0; i < intDomain_.size(); i++) { output.writeMessage(10, intDomain_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { output.writeMessage(11, getDatasetConstraints()); } for (int i = 0; i < weightedFeature_.size(); i++) { output.writeMessage(12, weightedFeature_.get(i)); } com.google.protobuf.GeneratedMessageV3 .serializeStringMapTo( output, internalGetTensorRepresentationGroup(), TensorRepresentationGroupDefaultEntryHolder.defaultEntry, 13); if (((bitField0_ & 0x00000001) != 0)) { output.writeBool(14, representVariableLengthAsRagged_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; for (int i = 0; i < feature_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(1, feature_.get(i)); } for (int i = 0; i < stringDomain_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(4, stringDomain_.get(i)); } { int dataSize = 0; for (int i = 0; i < defaultEnvironment_.size(); i++) { dataSize += computeStringSizeNoTag(defaultEnvironment_.getRaw(i)); } size += dataSize; size += 1 * getDefaultEnvironmentList().size(); } for (int i = 0; i < sparseFeature_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(6, sparseFeature_.get(i)); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(8, getAnnotation()); } for (int i = 0; i < floatDomain_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(9, floatDomain_.get(i)); } for (int i = 0; i < intDomain_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(10, intDomain_.get(i)); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(11, getDatasetConstraints()); } for (int i = 0; i < weightedFeature_.size(); i++) { size += com.google.protobuf.CodedOutputStream .computeMessageSize(12, weightedFeature_.get(i)); } for (java.util.Map.Entry entry : internalGetTensorRepresentationGroup().getMap().entrySet()) { com.google.protobuf.MapEntry tensorRepresentationGroup__ = TensorRepresentationGroupDefaultEntryHolder.defaultEntry.newBuilderForType() .setKey(entry.getKey()) .setValue(entry.getValue()) .build(); size += com.google.protobuf.CodedOutputStream .computeMessageSize(13, tensorRepresentationGroup__); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream .computeBoolSize(14, representVariableLengthAsRagged_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof org.tensorflow.metadata.v0.Schema)) { return super.equals(obj); } org.tensorflow.metadata.v0.Schema other = (org.tensorflow.metadata.v0.Schema) obj; if (!getFeatureList() .equals(other.getFeatureList())) return false; if (!getSparseFeatureList() .equals(other.getSparseFeatureList())) return false; if (!getWeightedFeatureList() .equals(other.getWeightedFeatureList())) return false; if (!getStringDomainList() .equals(other.getStringDomainList())) return false; if (!getFloatDomainList() .equals(other.getFloatDomainList())) return false; if (!getIntDomainList() .equals(other.getIntDomainList())) return false; if (!getDefaultEnvironmentList() .equals(other.getDefaultEnvironmentList())) return false; if (hasRepresentVariableLengthAsRagged() != other.hasRepresentVariableLengthAsRagged()) return false; if (hasRepresentVariableLengthAsRagged()) { if (getRepresentVariableLengthAsRagged() != other.getRepresentVariableLengthAsRagged()) return false; } if (hasAnnotation() != other.hasAnnotation()) return false; if (hasAnnotation()) { if (!getAnnotation() .equals(other.getAnnotation())) return false; } if (hasDatasetConstraints() != other.hasDatasetConstraints()) return false; if (hasDatasetConstraints()) { if (!getDatasetConstraints() .equals(other.getDatasetConstraints())) return false; } if (!internalGetTensorRepresentationGroup().equals( other.internalGetTensorRepresentationGroup())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getFeatureCount() > 0) { hash = (37 * hash) + FEATURE_FIELD_NUMBER; hash = (53 * hash) + getFeatureList().hashCode(); } if (getSparseFeatureCount() > 0) { hash = (37 * hash) + SPARSE_FEATURE_FIELD_NUMBER; hash = (53 * hash) + getSparseFeatureList().hashCode(); } if (getWeightedFeatureCount() > 0) { hash = (37 * hash) + WEIGHTED_FEATURE_FIELD_NUMBER; hash = (53 * hash) + getWeightedFeatureList().hashCode(); } if (getStringDomainCount() > 0) { hash = (37 * hash) + STRING_DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getStringDomainList().hashCode(); } if (getFloatDomainCount() > 0) { hash = (37 * hash) + FLOAT_DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getFloatDomainList().hashCode(); } if (getIntDomainCount() > 0) { hash = (37 * hash) + INT_DOMAIN_FIELD_NUMBER; hash = (53 * hash) + getIntDomainList().hashCode(); } if (getDefaultEnvironmentCount() > 0) { hash = (37 * hash) + DEFAULT_ENVIRONMENT_FIELD_NUMBER; hash = (53 * hash) + getDefaultEnvironmentList().hashCode(); } if (hasRepresentVariableLengthAsRagged()) { hash = (37 * hash) + REPRESENT_VARIABLE_LENGTH_AS_RAGGED_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getRepresentVariableLengthAsRagged()); } if (hasAnnotation()) { hash = (37 * hash) + ANNOTATION_FIELD_NUMBER; hash = (53 * hash) + getAnnotation().hashCode(); } if (hasDatasetConstraints()) { hash = (37 * hash) + DATASET_CONSTRAINTS_FIELD_NUMBER; hash = (53 * hash) + getDatasetConstraints().hashCode(); } if (!internalGetTensorRepresentationGroup().getMap().isEmpty()) { hash = (37 * hash) + TENSOR_REPRESENTATION_GROUP_FIELD_NUMBER; hash = (53 * hash) + internalGetTensorRepresentationGroup().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static org.tensorflow.metadata.v0.Schema parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.Schema parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.Schema parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.Schema parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.Schema parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static org.tensorflow.metadata.v0.Schema parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static org.tensorflow.metadata.v0.Schema parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.Schema parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.Schema parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.Schema parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseDelimitedWithIOException(PARSER, input, extensionRegistry); } public static org.tensorflow.metadata.v0.Schema parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input); } public static org.tensorflow.metadata.v0.Schema parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3 .parseWithIOException(PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(org.tensorflow.metadata.v0.Schema prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** *
   *
   * Message to represent schema information.
   * NextID: 15
   * 
* * Protobuf type {@code tensorflow.metadata.v0.Schema} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:tensorflow.metadata.v0.Schema) org.tensorflow.metadata.v0.SchemaOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_descriptor; } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 13: return internalGetTensorRepresentationGroup(); default: throw new RuntimeException( "Invalid map field number: " + number); } } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMutableMapFieldReflection( int number) { switch (number) { case 13: return internalGetMutableTensorRepresentationGroup(); default: throw new RuntimeException( "Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_fieldAccessorTable .ensureFieldAccessorsInitialized( org.tensorflow.metadata.v0.Schema.class, org.tensorflow.metadata.v0.Schema.Builder.class); } // Construct using org.tensorflow.metadata.v0.Schema.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3 .alwaysUseFieldBuilders) { getFeatureFieldBuilder(); getSparseFeatureFieldBuilder(); getWeightedFeatureFieldBuilder(); getStringDomainFieldBuilder(); getFloatDomainFieldBuilder(); getIntDomainFieldBuilder(); getAnnotationFieldBuilder(); getDatasetConstraintsFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (featureBuilder_ == null) { feature_ = java.util.Collections.emptyList(); } else { feature_ = null; featureBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000001); if (sparseFeatureBuilder_ == null) { sparseFeature_ = java.util.Collections.emptyList(); } else { sparseFeature_ = null; sparseFeatureBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000002); if (weightedFeatureBuilder_ == null) { weightedFeature_ = java.util.Collections.emptyList(); } else { weightedFeature_ = null; weightedFeatureBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000004); if (stringDomainBuilder_ == null) { stringDomain_ = java.util.Collections.emptyList(); } else { stringDomain_ = null; stringDomainBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); if (floatDomainBuilder_ == null) { floatDomain_ = java.util.Collections.emptyList(); } else { floatDomain_ = null; floatDomainBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000010); if (intDomainBuilder_ == null) { intDomain_ = java.util.Collections.emptyList(); } else { intDomain_ = null; intDomainBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); defaultEnvironment_ = com.google.protobuf.LazyStringArrayList.emptyList(); representVariableLengthAsRagged_ = false; annotation_ = null; if (annotationBuilder_ != null) { annotationBuilder_.dispose(); annotationBuilder_ = null; } datasetConstraints_ = null; if (datasetConstraintsBuilder_ != null) { datasetConstraintsBuilder_.dispose(); datasetConstraintsBuilder_ = null; } internalGetMutableTensorRepresentationGroup().clear(); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return org.tensorflow.metadata.v0.SchemaOuterClass.internal_static_tensorflow_metadata_v0_Schema_descriptor; } @java.lang.Override public org.tensorflow.metadata.v0.Schema getDefaultInstanceForType() { return org.tensorflow.metadata.v0.Schema.getDefaultInstance(); } @java.lang.Override public org.tensorflow.metadata.v0.Schema build() { org.tensorflow.metadata.v0.Schema result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public org.tensorflow.metadata.v0.Schema buildPartial() { org.tensorflow.metadata.v0.Schema result = new org.tensorflow.metadata.v0.Schema(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields(org.tensorflow.metadata.v0.Schema result) { if (featureBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0)) { feature_ = java.util.Collections.unmodifiableList(feature_); bitField0_ = (bitField0_ & ~0x00000001); } result.feature_ = feature_; } else { result.feature_ = featureBuilder_.build(); } if (sparseFeatureBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0)) { sparseFeature_ = java.util.Collections.unmodifiableList(sparseFeature_); bitField0_ = (bitField0_ & ~0x00000002); } result.sparseFeature_ = sparseFeature_; } else { result.sparseFeature_ = sparseFeatureBuilder_.build(); } if (weightedFeatureBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0)) { weightedFeature_ = java.util.Collections.unmodifiableList(weightedFeature_); bitField0_ = (bitField0_ & ~0x00000004); } result.weightedFeature_ = weightedFeature_; } else { result.weightedFeature_ = weightedFeatureBuilder_.build(); } if (stringDomainBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { stringDomain_ = java.util.Collections.unmodifiableList(stringDomain_); bitField0_ = (bitField0_ & ~0x00000008); } result.stringDomain_ = stringDomain_; } else { result.stringDomain_ = stringDomainBuilder_.build(); } if (floatDomainBuilder_ == null) { if (((bitField0_ & 0x00000010) != 0)) { floatDomain_ = java.util.Collections.unmodifiableList(floatDomain_); bitField0_ = (bitField0_ & ~0x00000010); } result.floatDomain_ = floatDomain_; } else { result.floatDomain_ = floatDomainBuilder_.build(); } if (intDomainBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { intDomain_ = java.util.Collections.unmodifiableList(intDomain_); bitField0_ = (bitField0_ & ~0x00000020); } result.intDomain_ = intDomain_; } else { result.intDomain_ = intDomainBuilder_.build(); } } private void buildPartial0(org.tensorflow.metadata.v0.Schema result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000040) != 0)) { defaultEnvironment_.makeImmutable(); result.defaultEnvironment_ = defaultEnvironment_; } int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000080) != 0)) { result.representVariableLengthAsRagged_ = representVariableLengthAsRagged_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000100) != 0)) { result.annotation_ = annotationBuilder_ == null ? annotation_ : annotationBuilder_.build(); to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000200) != 0)) { result.datasetConstraints_ = datasetConstraintsBuilder_ == null ? datasetConstraints_ : datasetConstraintsBuilder_.build(); to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000400) != 0)) { result.tensorRepresentationGroup_ = internalGetTensorRepresentationGroup().build(TensorRepresentationGroupDefaultEntryHolder.defaultEntry); } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField( com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof( com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof org.tensorflow.metadata.v0.Schema) { return mergeFrom((org.tensorflow.metadata.v0.Schema)other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(org.tensorflow.metadata.v0.Schema other) { if (other == org.tensorflow.metadata.v0.Schema.getDefaultInstance()) return this; if (featureBuilder_ == null) { if (!other.feature_.isEmpty()) { if (feature_.isEmpty()) { feature_ = other.feature_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureFeatureIsMutable(); feature_.addAll(other.feature_); } onChanged(); } } else { if (!other.feature_.isEmpty()) { if (featureBuilder_.isEmpty()) { featureBuilder_.dispose(); featureBuilder_ = null; feature_ = other.feature_; bitField0_ = (bitField0_ & ~0x00000001); featureBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getFeatureFieldBuilder() : null; } else { featureBuilder_.addAllMessages(other.feature_); } } } if (sparseFeatureBuilder_ == null) { if (!other.sparseFeature_.isEmpty()) { if (sparseFeature_.isEmpty()) { sparseFeature_ = other.sparseFeature_; bitField0_ = (bitField0_ & ~0x00000002); } else { ensureSparseFeatureIsMutable(); sparseFeature_.addAll(other.sparseFeature_); } onChanged(); } } else { if (!other.sparseFeature_.isEmpty()) { if (sparseFeatureBuilder_.isEmpty()) { sparseFeatureBuilder_.dispose(); sparseFeatureBuilder_ = null; sparseFeature_ = other.sparseFeature_; bitField0_ = (bitField0_ & ~0x00000002); sparseFeatureBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getSparseFeatureFieldBuilder() : null; } else { sparseFeatureBuilder_.addAllMessages(other.sparseFeature_); } } } if (weightedFeatureBuilder_ == null) { if (!other.weightedFeature_.isEmpty()) { if (weightedFeature_.isEmpty()) { weightedFeature_ = other.weightedFeature_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensureWeightedFeatureIsMutable(); weightedFeature_.addAll(other.weightedFeature_); } onChanged(); } } else { if (!other.weightedFeature_.isEmpty()) { if (weightedFeatureBuilder_.isEmpty()) { weightedFeatureBuilder_.dispose(); weightedFeatureBuilder_ = null; weightedFeature_ = other.weightedFeature_; bitField0_ = (bitField0_ & ~0x00000004); weightedFeatureBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getWeightedFeatureFieldBuilder() : null; } else { weightedFeatureBuilder_.addAllMessages(other.weightedFeature_); } } } if (stringDomainBuilder_ == null) { if (!other.stringDomain_.isEmpty()) { if (stringDomain_.isEmpty()) { stringDomain_ = other.stringDomain_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureStringDomainIsMutable(); stringDomain_.addAll(other.stringDomain_); } onChanged(); } } else { if (!other.stringDomain_.isEmpty()) { if (stringDomainBuilder_.isEmpty()) { stringDomainBuilder_.dispose(); stringDomainBuilder_ = null; stringDomain_ = other.stringDomain_; bitField0_ = (bitField0_ & ~0x00000008); stringDomainBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getStringDomainFieldBuilder() : null; } else { stringDomainBuilder_.addAllMessages(other.stringDomain_); } } } if (floatDomainBuilder_ == null) { if (!other.floatDomain_.isEmpty()) { if (floatDomain_.isEmpty()) { floatDomain_ = other.floatDomain_; bitField0_ = (bitField0_ & ~0x00000010); } else { ensureFloatDomainIsMutable(); floatDomain_.addAll(other.floatDomain_); } onChanged(); } } else { if (!other.floatDomain_.isEmpty()) { if (floatDomainBuilder_.isEmpty()) { floatDomainBuilder_.dispose(); floatDomainBuilder_ = null; floatDomain_ = other.floatDomain_; bitField0_ = (bitField0_ & ~0x00000010); floatDomainBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getFloatDomainFieldBuilder() : null; } else { floatDomainBuilder_.addAllMessages(other.floatDomain_); } } } if (intDomainBuilder_ == null) { if (!other.intDomain_.isEmpty()) { if (intDomain_.isEmpty()) { intDomain_ = other.intDomain_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureIntDomainIsMutable(); intDomain_.addAll(other.intDomain_); } onChanged(); } } else { if (!other.intDomain_.isEmpty()) { if (intDomainBuilder_.isEmpty()) { intDomainBuilder_.dispose(); intDomainBuilder_ = null; intDomain_ = other.intDomain_; bitField0_ = (bitField0_ & ~0x00000020); intDomainBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getIntDomainFieldBuilder() : null; } else { intDomainBuilder_.addAllMessages(other.intDomain_); } } } if (!other.defaultEnvironment_.isEmpty()) { if (defaultEnvironment_.isEmpty()) { defaultEnvironment_ = other.defaultEnvironment_; bitField0_ |= 0x00000040; } else { ensureDefaultEnvironmentIsMutable(); defaultEnvironment_.addAll(other.defaultEnvironment_); } onChanged(); } if (other.hasRepresentVariableLengthAsRagged()) { setRepresentVariableLengthAsRagged(other.getRepresentVariableLengthAsRagged()); } if (other.hasAnnotation()) { mergeAnnotation(other.getAnnotation()); } if (other.hasDatasetConstraints()) { mergeDatasetConstraints(other.getDatasetConstraints()); } internalGetMutableTensorRepresentationGroup().mergeFrom( other.internalGetTensorRepresentationGroup()); bitField0_ |= 0x00000400; this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { org.tensorflow.metadata.v0.Feature m = input.readMessage( org.tensorflow.metadata.v0.Feature.PARSER, extensionRegistry); if (featureBuilder_ == null) { ensureFeatureIsMutable(); feature_.add(m); } else { featureBuilder_.addMessage(m); } break; } // case 10 case 34: { org.tensorflow.metadata.v0.StringDomain m = input.readMessage( org.tensorflow.metadata.v0.StringDomain.PARSER, extensionRegistry); if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); stringDomain_.add(m); } else { stringDomainBuilder_.addMessage(m); } break; } // case 34 case 42: { com.google.protobuf.ByteString bs = input.readBytes(); ensureDefaultEnvironmentIsMutable(); defaultEnvironment_.add(bs); break; } // case 42 case 50: { org.tensorflow.metadata.v0.SparseFeature m = input.readMessage( org.tensorflow.metadata.v0.SparseFeature.PARSER, extensionRegistry); if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); sparseFeature_.add(m); } else { sparseFeatureBuilder_.addMessage(m); } break; } // case 50 case 66: { input.readMessage( getAnnotationFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000100; break; } // case 66 case 74: { org.tensorflow.metadata.v0.FloatDomain m = input.readMessage( org.tensorflow.metadata.v0.FloatDomain.PARSER, extensionRegistry); if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); floatDomain_.add(m); } else { floatDomainBuilder_.addMessage(m); } break; } // case 74 case 82: { org.tensorflow.metadata.v0.IntDomain m = input.readMessage( org.tensorflow.metadata.v0.IntDomain.PARSER, extensionRegistry); if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); intDomain_.add(m); } else { intDomainBuilder_.addMessage(m); } break; } // case 82 case 90: { input.readMessage( getDatasetConstraintsFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000200; break; } // case 90 case 98: { org.tensorflow.metadata.v0.WeightedFeature m = input.readMessage( org.tensorflow.metadata.v0.WeightedFeature.PARSER, extensionRegistry); if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); weightedFeature_.add(m); } else { weightedFeatureBuilder_.addMessage(m); } break; } // case 98 case 106: { com.google.protobuf.MapEntry tensorRepresentationGroup__ = input.readMessage( TensorRepresentationGroupDefaultEntryHolder.defaultEntry.getParserForType(), extensionRegistry); internalGetMutableTensorRepresentationGroup().ensureBuilderMap().put( tensorRepresentationGroup__.getKey(), tensorRepresentationGroup__.getValue()); bitField0_ |= 0x00000400; break; } // case 106 case 112: { representVariableLengthAsRagged_ = input.readBool(); bitField0_ |= 0x00000080; break; } // case 112 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.util.List feature_ = java.util.Collections.emptyList(); private void ensureFeatureIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { feature_ = new java.util.ArrayList(feature_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Feature, org.tensorflow.metadata.v0.Feature.Builder, org.tensorflow.metadata.v0.FeatureOrBuilder> featureBuilder_; /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public java.util.List getFeatureList() { if (featureBuilder_ == null) { return java.util.Collections.unmodifiableList(feature_); } else { return featureBuilder_.getMessageList(); } } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public int getFeatureCount() { if (featureBuilder_ == null) { return feature_.size(); } else { return featureBuilder_.getCount(); } } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public org.tensorflow.metadata.v0.Feature getFeature(int index) { if (featureBuilder_ == null) { return feature_.get(index); } else { return featureBuilder_.getMessage(index); } } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder setFeature( int index, org.tensorflow.metadata.v0.Feature value) { if (featureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeatureIsMutable(); feature_.set(index, value); onChanged(); } else { featureBuilder_.setMessage(index, value); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder setFeature( int index, org.tensorflow.metadata.v0.Feature.Builder builderForValue) { if (featureBuilder_ == null) { ensureFeatureIsMutable(); feature_.set(index, builderForValue.build()); onChanged(); } else { featureBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder addFeature(org.tensorflow.metadata.v0.Feature value) { if (featureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeatureIsMutable(); feature_.add(value); onChanged(); } else { featureBuilder_.addMessage(value); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder addFeature( int index, org.tensorflow.metadata.v0.Feature value) { if (featureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFeatureIsMutable(); feature_.add(index, value); onChanged(); } else { featureBuilder_.addMessage(index, value); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder addFeature( org.tensorflow.metadata.v0.Feature.Builder builderForValue) { if (featureBuilder_ == null) { ensureFeatureIsMutable(); feature_.add(builderForValue.build()); onChanged(); } else { featureBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder addFeature( int index, org.tensorflow.metadata.v0.Feature.Builder builderForValue) { if (featureBuilder_ == null) { ensureFeatureIsMutable(); feature_.add(index, builderForValue.build()); onChanged(); } else { featureBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder addAllFeature( java.lang.Iterable values) { if (featureBuilder_ == null) { ensureFeatureIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, feature_); onChanged(); } else { featureBuilder_.addAllMessages(values); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder clearFeature() { if (featureBuilder_ == null) { feature_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { featureBuilder_.clear(); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public Builder removeFeature(int index) { if (featureBuilder_ == null) { ensureFeatureIsMutable(); feature_.remove(index); onChanged(); } else { featureBuilder_.remove(index); } return this; } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public org.tensorflow.metadata.v0.Feature.Builder getFeatureBuilder( int index) { return getFeatureFieldBuilder().getBuilder(index); } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public org.tensorflow.metadata.v0.FeatureOrBuilder getFeatureOrBuilder( int index) { if (featureBuilder_ == null) { return feature_.get(index); } else { return featureBuilder_.getMessageOrBuilder(index); } } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public java.util.List getFeatureOrBuilderList() { if (featureBuilder_ != null) { return featureBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(feature_); } } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public org.tensorflow.metadata.v0.Feature.Builder addFeatureBuilder() { return getFeatureFieldBuilder().addBuilder( org.tensorflow.metadata.v0.Feature.getDefaultInstance()); } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public org.tensorflow.metadata.v0.Feature.Builder addFeatureBuilder( int index) { return getFeatureFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.Feature.getDefaultInstance()); } /** *
     * Features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ public java.util.List getFeatureBuilderList() { return getFeatureFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Feature, org.tensorflow.metadata.v0.Feature.Builder, org.tensorflow.metadata.v0.FeatureOrBuilder> getFeatureFieldBuilder() { if (featureBuilder_ == null) { featureBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.Feature, org.tensorflow.metadata.v0.Feature.Builder, org.tensorflow.metadata.v0.FeatureOrBuilder>( feature_, ((bitField0_ & 0x00000001) != 0), getParentForChildren(), isClean()); feature_ = null; } return featureBuilder_; } private java.util.List sparseFeature_ = java.util.Collections.emptyList(); private void ensureSparseFeatureIsMutable() { if (!((bitField0_ & 0x00000002) != 0)) { sparseFeature_ = new java.util.ArrayList(sparseFeature_); bitField0_ |= 0x00000002; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.SparseFeature, org.tensorflow.metadata.v0.SparseFeature.Builder, org.tensorflow.metadata.v0.SparseFeatureOrBuilder> sparseFeatureBuilder_; /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public java.util.List getSparseFeatureList() { if (sparseFeatureBuilder_ == null) { return java.util.Collections.unmodifiableList(sparseFeature_); } else { return sparseFeatureBuilder_.getMessageList(); } } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public int getSparseFeatureCount() { if (sparseFeatureBuilder_ == null) { return sparseFeature_.size(); } else { return sparseFeatureBuilder_.getCount(); } } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public org.tensorflow.metadata.v0.SparseFeature getSparseFeature(int index) { if (sparseFeatureBuilder_ == null) { return sparseFeature_.get(index); } else { return sparseFeatureBuilder_.getMessage(index); } } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder setSparseFeature( int index, org.tensorflow.metadata.v0.SparseFeature value) { if (sparseFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseFeatureIsMutable(); sparseFeature_.set(index, value); onChanged(); } else { sparseFeatureBuilder_.setMessage(index, value); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder setSparseFeature( int index, org.tensorflow.metadata.v0.SparseFeature.Builder builderForValue) { if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); sparseFeature_.set(index, builderForValue.build()); onChanged(); } else { sparseFeatureBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder addSparseFeature(org.tensorflow.metadata.v0.SparseFeature value) { if (sparseFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseFeatureIsMutable(); sparseFeature_.add(value); onChanged(); } else { sparseFeatureBuilder_.addMessage(value); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder addSparseFeature( int index, org.tensorflow.metadata.v0.SparseFeature value) { if (sparseFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureSparseFeatureIsMutable(); sparseFeature_.add(index, value); onChanged(); } else { sparseFeatureBuilder_.addMessage(index, value); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder addSparseFeature( org.tensorflow.metadata.v0.SparseFeature.Builder builderForValue) { if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); sparseFeature_.add(builderForValue.build()); onChanged(); } else { sparseFeatureBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder addSparseFeature( int index, org.tensorflow.metadata.v0.SparseFeature.Builder builderForValue) { if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); sparseFeature_.add(index, builderForValue.build()); onChanged(); } else { sparseFeatureBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder addAllSparseFeature( java.lang.Iterable values) { if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, sparseFeature_); onChanged(); } else { sparseFeatureBuilder_.addAllMessages(values); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder clearSparseFeature() { if (sparseFeatureBuilder_ == null) { sparseFeature_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); } else { sparseFeatureBuilder_.clear(); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public Builder removeSparseFeature(int index) { if (sparseFeatureBuilder_ == null) { ensureSparseFeatureIsMutable(); sparseFeature_.remove(index); onChanged(); } else { sparseFeatureBuilder_.remove(index); } return this; } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public org.tensorflow.metadata.v0.SparseFeature.Builder getSparseFeatureBuilder( int index) { return getSparseFeatureFieldBuilder().getBuilder(index); } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public org.tensorflow.metadata.v0.SparseFeatureOrBuilder getSparseFeatureOrBuilder( int index) { if (sparseFeatureBuilder_ == null) { return sparseFeature_.get(index); } else { return sparseFeatureBuilder_.getMessageOrBuilder(index); } } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public java.util.List getSparseFeatureOrBuilderList() { if (sparseFeatureBuilder_ != null) { return sparseFeatureBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(sparseFeature_); } } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public org.tensorflow.metadata.v0.SparseFeature.Builder addSparseFeatureBuilder() { return getSparseFeatureFieldBuilder().addBuilder( org.tensorflow.metadata.v0.SparseFeature.getDefaultInstance()); } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public org.tensorflow.metadata.v0.SparseFeature.Builder addSparseFeatureBuilder( int index) { return getSparseFeatureFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.SparseFeature.getDefaultInstance()); } /** *
     * Sparse features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ public java.util.List getSparseFeatureBuilderList() { return getSparseFeatureFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.SparseFeature, org.tensorflow.metadata.v0.SparseFeature.Builder, org.tensorflow.metadata.v0.SparseFeatureOrBuilder> getSparseFeatureFieldBuilder() { if (sparseFeatureBuilder_ == null) { sparseFeatureBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.SparseFeature, org.tensorflow.metadata.v0.SparseFeature.Builder, org.tensorflow.metadata.v0.SparseFeatureOrBuilder>( sparseFeature_, ((bitField0_ & 0x00000002) != 0), getParentForChildren(), isClean()); sparseFeature_ = null; } return sparseFeatureBuilder_; } private java.util.List weightedFeature_ = java.util.Collections.emptyList(); private void ensureWeightedFeatureIsMutable() { if (!((bitField0_ & 0x00000004) != 0)) { weightedFeature_ = new java.util.ArrayList(weightedFeature_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.WeightedFeature, org.tensorflow.metadata.v0.WeightedFeature.Builder, org.tensorflow.metadata.v0.WeightedFeatureOrBuilder> weightedFeatureBuilder_; /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public java.util.List getWeightedFeatureList() { if (weightedFeatureBuilder_ == null) { return java.util.Collections.unmodifiableList(weightedFeature_); } else { return weightedFeatureBuilder_.getMessageList(); } } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public int getWeightedFeatureCount() { if (weightedFeatureBuilder_ == null) { return weightedFeature_.size(); } else { return weightedFeatureBuilder_.getCount(); } } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public org.tensorflow.metadata.v0.WeightedFeature getWeightedFeature(int index) { if (weightedFeatureBuilder_ == null) { return weightedFeature_.get(index); } else { return weightedFeatureBuilder_.getMessage(index); } } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder setWeightedFeature( int index, org.tensorflow.metadata.v0.WeightedFeature value) { if (weightedFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureWeightedFeatureIsMutable(); weightedFeature_.set(index, value); onChanged(); } else { weightedFeatureBuilder_.setMessage(index, value); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder setWeightedFeature( int index, org.tensorflow.metadata.v0.WeightedFeature.Builder builderForValue) { if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); weightedFeature_.set(index, builderForValue.build()); onChanged(); } else { weightedFeatureBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder addWeightedFeature(org.tensorflow.metadata.v0.WeightedFeature value) { if (weightedFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureWeightedFeatureIsMutable(); weightedFeature_.add(value); onChanged(); } else { weightedFeatureBuilder_.addMessage(value); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder addWeightedFeature( int index, org.tensorflow.metadata.v0.WeightedFeature value) { if (weightedFeatureBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureWeightedFeatureIsMutable(); weightedFeature_.add(index, value); onChanged(); } else { weightedFeatureBuilder_.addMessage(index, value); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder addWeightedFeature( org.tensorflow.metadata.v0.WeightedFeature.Builder builderForValue) { if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); weightedFeature_.add(builderForValue.build()); onChanged(); } else { weightedFeatureBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder addWeightedFeature( int index, org.tensorflow.metadata.v0.WeightedFeature.Builder builderForValue) { if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); weightedFeature_.add(index, builderForValue.build()); onChanged(); } else { weightedFeatureBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder addAllWeightedFeature( java.lang.Iterable values) { if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, weightedFeature_); onChanged(); } else { weightedFeatureBuilder_.addAllMessages(values); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder clearWeightedFeature() { if (weightedFeatureBuilder_ == null) { weightedFeature_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { weightedFeatureBuilder_.clear(); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public Builder removeWeightedFeature(int index) { if (weightedFeatureBuilder_ == null) { ensureWeightedFeatureIsMutable(); weightedFeature_.remove(index); onChanged(); } else { weightedFeatureBuilder_.remove(index); } return this; } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public org.tensorflow.metadata.v0.WeightedFeature.Builder getWeightedFeatureBuilder( int index) { return getWeightedFeatureFieldBuilder().getBuilder(index); } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public org.tensorflow.metadata.v0.WeightedFeatureOrBuilder getWeightedFeatureOrBuilder( int index) { if (weightedFeatureBuilder_ == null) { return weightedFeature_.get(index); } else { return weightedFeatureBuilder_.getMessageOrBuilder(index); } } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public java.util.List getWeightedFeatureOrBuilderList() { if (weightedFeatureBuilder_ != null) { return weightedFeatureBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(weightedFeature_); } } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public org.tensorflow.metadata.v0.WeightedFeature.Builder addWeightedFeatureBuilder() { return getWeightedFeatureFieldBuilder().addBuilder( org.tensorflow.metadata.v0.WeightedFeature.getDefaultInstance()); } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public org.tensorflow.metadata.v0.WeightedFeature.Builder addWeightedFeatureBuilder( int index) { return getWeightedFeatureFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.WeightedFeature.getDefaultInstance()); } /** *
     * Weighted features described in this schema.
     * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ public java.util.List getWeightedFeatureBuilderList() { return getWeightedFeatureFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.WeightedFeature, org.tensorflow.metadata.v0.WeightedFeature.Builder, org.tensorflow.metadata.v0.WeightedFeatureOrBuilder> getWeightedFeatureFieldBuilder() { if (weightedFeatureBuilder_ == null) { weightedFeatureBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.WeightedFeature, org.tensorflow.metadata.v0.WeightedFeature.Builder, org.tensorflow.metadata.v0.WeightedFeatureOrBuilder>( weightedFeature_, ((bitField0_ & 0x00000004) != 0), getParentForChildren(), isClean()); weightedFeature_ = null; } return weightedFeatureBuilder_; } private java.util.List stringDomain_ = java.util.Collections.emptyList(); private void ensureStringDomainIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { stringDomain_ = new java.util.ArrayList(stringDomain_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.StringDomain, org.tensorflow.metadata.v0.StringDomain.Builder, org.tensorflow.metadata.v0.StringDomainOrBuilder> stringDomainBuilder_; /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public java.util.List getStringDomainList() { if (stringDomainBuilder_ == null) { return java.util.Collections.unmodifiableList(stringDomain_); } else { return stringDomainBuilder_.getMessageList(); } } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public int getStringDomainCount() { if (stringDomainBuilder_ == null) { return stringDomain_.size(); } else { return stringDomainBuilder_.getCount(); } } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public org.tensorflow.metadata.v0.StringDomain getStringDomain(int index) { if (stringDomainBuilder_ == null) { return stringDomain_.get(index); } else { return stringDomainBuilder_.getMessage(index); } } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder setStringDomain( int index, org.tensorflow.metadata.v0.StringDomain value) { if (stringDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureStringDomainIsMutable(); stringDomain_.set(index, value); onChanged(); } else { stringDomainBuilder_.setMessage(index, value); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder setStringDomain( int index, org.tensorflow.metadata.v0.StringDomain.Builder builderForValue) { if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); stringDomain_.set(index, builderForValue.build()); onChanged(); } else { stringDomainBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder addStringDomain(org.tensorflow.metadata.v0.StringDomain value) { if (stringDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureStringDomainIsMutable(); stringDomain_.add(value); onChanged(); } else { stringDomainBuilder_.addMessage(value); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder addStringDomain( int index, org.tensorflow.metadata.v0.StringDomain value) { if (stringDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureStringDomainIsMutable(); stringDomain_.add(index, value); onChanged(); } else { stringDomainBuilder_.addMessage(index, value); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder addStringDomain( org.tensorflow.metadata.v0.StringDomain.Builder builderForValue) { if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); stringDomain_.add(builderForValue.build()); onChanged(); } else { stringDomainBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder addStringDomain( int index, org.tensorflow.metadata.v0.StringDomain.Builder builderForValue) { if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); stringDomain_.add(index, builderForValue.build()); onChanged(); } else { stringDomainBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder addAllStringDomain( java.lang.Iterable values) { if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, stringDomain_); onChanged(); } else { stringDomainBuilder_.addAllMessages(values); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder clearStringDomain() { if (stringDomainBuilder_ == null) { stringDomain_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { stringDomainBuilder_.clear(); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public Builder removeStringDomain(int index) { if (stringDomainBuilder_ == null) { ensureStringDomainIsMutable(); stringDomain_.remove(index); onChanged(); } else { stringDomainBuilder_.remove(index); } return this; } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public org.tensorflow.metadata.v0.StringDomain.Builder getStringDomainBuilder( int index) { return getStringDomainFieldBuilder().getBuilder(index); } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public org.tensorflow.metadata.v0.StringDomainOrBuilder getStringDomainOrBuilder( int index) { if (stringDomainBuilder_ == null) { return stringDomain_.get(index); } else { return stringDomainBuilder_.getMessageOrBuilder(index); } } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public java.util.List getStringDomainOrBuilderList() { if (stringDomainBuilder_ != null) { return stringDomainBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(stringDomain_); } } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public org.tensorflow.metadata.v0.StringDomain.Builder addStringDomainBuilder() { return getStringDomainFieldBuilder().addBuilder( org.tensorflow.metadata.v0.StringDomain.getDefaultInstance()); } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public org.tensorflow.metadata.v0.StringDomain.Builder addStringDomainBuilder( int index) { return getStringDomainFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.StringDomain.getDefaultInstance()); } /** *
     * declared as top-level features in <feature>.
     * String domains referenced in the features.
     * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ public java.util.List getStringDomainBuilderList() { return getStringDomainFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.StringDomain, org.tensorflow.metadata.v0.StringDomain.Builder, org.tensorflow.metadata.v0.StringDomainOrBuilder> getStringDomainFieldBuilder() { if (stringDomainBuilder_ == null) { stringDomainBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.StringDomain, org.tensorflow.metadata.v0.StringDomain.Builder, org.tensorflow.metadata.v0.StringDomainOrBuilder>( stringDomain_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); stringDomain_ = null; } return stringDomainBuilder_; } private java.util.List floatDomain_ = java.util.Collections.emptyList(); private void ensureFloatDomainIsMutable() { if (!((bitField0_ & 0x00000010) != 0)) { floatDomain_ = new java.util.ArrayList(floatDomain_); bitField0_ |= 0x00000010; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.FloatDomain, org.tensorflow.metadata.v0.FloatDomain.Builder, org.tensorflow.metadata.v0.FloatDomainOrBuilder> floatDomainBuilder_; /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public java.util.List getFloatDomainList() { if (floatDomainBuilder_ == null) { return java.util.Collections.unmodifiableList(floatDomain_); } else { return floatDomainBuilder_.getMessageList(); } } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public int getFloatDomainCount() { if (floatDomainBuilder_ == null) { return floatDomain_.size(); } else { return floatDomainBuilder_.getCount(); } } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public org.tensorflow.metadata.v0.FloatDomain getFloatDomain(int index) { if (floatDomainBuilder_ == null) { return floatDomain_.get(index); } else { return floatDomainBuilder_.getMessage(index); } } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder setFloatDomain( int index, org.tensorflow.metadata.v0.FloatDomain value) { if (floatDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFloatDomainIsMutable(); floatDomain_.set(index, value); onChanged(); } else { floatDomainBuilder_.setMessage(index, value); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder setFloatDomain( int index, org.tensorflow.metadata.v0.FloatDomain.Builder builderForValue) { if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); floatDomain_.set(index, builderForValue.build()); onChanged(); } else { floatDomainBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder addFloatDomain(org.tensorflow.metadata.v0.FloatDomain value) { if (floatDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFloatDomainIsMutable(); floatDomain_.add(value); onChanged(); } else { floatDomainBuilder_.addMessage(value); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder addFloatDomain( int index, org.tensorflow.metadata.v0.FloatDomain value) { if (floatDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureFloatDomainIsMutable(); floatDomain_.add(index, value); onChanged(); } else { floatDomainBuilder_.addMessage(index, value); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder addFloatDomain( org.tensorflow.metadata.v0.FloatDomain.Builder builderForValue) { if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); floatDomain_.add(builderForValue.build()); onChanged(); } else { floatDomainBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder addFloatDomain( int index, org.tensorflow.metadata.v0.FloatDomain.Builder builderForValue) { if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); floatDomain_.add(index, builderForValue.build()); onChanged(); } else { floatDomainBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder addAllFloatDomain( java.lang.Iterable values) { if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, floatDomain_); onChanged(); } else { floatDomainBuilder_.addAllMessages(values); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder clearFloatDomain() { if (floatDomainBuilder_ == null) { floatDomain_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); } else { floatDomainBuilder_.clear(); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public Builder removeFloatDomain(int index) { if (floatDomainBuilder_ == null) { ensureFloatDomainIsMutable(); floatDomain_.remove(index); onChanged(); } else { floatDomainBuilder_.remove(index); } return this; } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public org.tensorflow.metadata.v0.FloatDomain.Builder getFloatDomainBuilder( int index) { return getFloatDomainFieldBuilder().getBuilder(index); } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public org.tensorflow.metadata.v0.FloatDomainOrBuilder getFloatDomainOrBuilder( int index) { if (floatDomainBuilder_ == null) { return floatDomain_.get(index); } else { return floatDomainBuilder_.getMessageOrBuilder(index); } } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public java.util.List getFloatDomainOrBuilderList() { if (floatDomainBuilder_ != null) { return floatDomainBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(floatDomain_); } } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public org.tensorflow.metadata.v0.FloatDomain.Builder addFloatDomainBuilder() { return getFloatDomainFieldBuilder().addBuilder( org.tensorflow.metadata.v0.FloatDomain.getDefaultInstance()); } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public org.tensorflow.metadata.v0.FloatDomain.Builder addFloatDomainBuilder( int index) { return getFloatDomainFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.FloatDomain.getDefaultInstance()); } /** *
     * top level float domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ public java.util.List getFloatDomainBuilderList() { return getFloatDomainFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.FloatDomain, org.tensorflow.metadata.v0.FloatDomain.Builder, org.tensorflow.metadata.v0.FloatDomainOrBuilder> getFloatDomainFieldBuilder() { if (floatDomainBuilder_ == null) { floatDomainBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.FloatDomain, org.tensorflow.metadata.v0.FloatDomain.Builder, org.tensorflow.metadata.v0.FloatDomainOrBuilder>( floatDomain_, ((bitField0_ & 0x00000010) != 0), getParentForChildren(), isClean()); floatDomain_ = null; } return floatDomainBuilder_; } private java.util.List intDomain_ = java.util.Collections.emptyList(); private void ensureIntDomainIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { intDomain_ = new java.util.ArrayList(intDomain_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.IntDomain, org.tensorflow.metadata.v0.IntDomain.Builder, org.tensorflow.metadata.v0.IntDomainOrBuilder> intDomainBuilder_; /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public java.util.List getIntDomainList() { if (intDomainBuilder_ == null) { return java.util.Collections.unmodifiableList(intDomain_); } else { return intDomainBuilder_.getMessageList(); } } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public int getIntDomainCount() { if (intDomainBuilder_ == null) { return intDomain_.size(); } else { return intDomainBuilder_.getCount(); } } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public org.tensorflow.metadata.v0.IntDomain getIntDomain(int index) { if (intDomainBuilder_ == null) { return intDomain_.get(index); } else { return intDomainBuilder_.getMessage(index); } } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder setIntDomain( int index, org.tensorflow.metadata.v0.IntDomain value) { if (intDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureIntDomainIsMutable(); intDomain_.set(index, value); onChanged(); } else { intDomainBuilder_.setMessage(index, value); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder setIntDomain( int index, org.tensorflow.metadata.v0.IntDomain.Builder builderForValue) { if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); intDomain_.set(index, builderForValue.build()); onChanged(); } else { intDomainBuilder_.setMessage(index, builderForValue.build()); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder addIntDomain(org.tensorflow.metadata.v0.IntDomain value) { if (intDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureIntDomainIsMutable(); intDomain_.add(value); onChanged(); } else { intDomainBuilder_.addMessage(value); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder addIntDomain( int index, org.tensorflow.metadata.v0.IntDomain value) { if (intDomainBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureIntDomainIsMutable(); intDomain_.add(index, value); onChanged(); } else { intDomainBuilder_.addMessage(index, value); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder addIntDomain( org.tensorflow.metadata.v0.IntDomain.Builder builderForValue) { if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); intDomain_.add(builderForValue.build()); onChanged(); } else { intDomainBuilder_.addMessage(builderForValue.build()); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder addIntDomain( int index, org.tensorflow.metadata.v0.IntDomain.Builder builderForValue) { if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); intDomain_.add(index, builderForValue.build()); onChanged(); } else { intDomainBuilder_.addMessage(index, builderForValue.build()); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder addAllIntDomain( java.lang.Iterable values) { if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, intDomain_); onChanged(); } else { intDomainBuilder_.addAllMessages(values); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder clearIntDomain() { if (intDomainBuilder_ == null) { intDomain_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { intDomainBuilder_.clear(); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public Builder removeIntDomain(int index) { if (intDomainBuilder_ == null) { ensureIntDomainIsMutable(); intDomain_.remove(index); onChanged(); } else { intDomainBuilder_.remove(index); } return this; } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public org.tensorflow.metadata.v0.IntDomain.Builder getIntDomainBuilder( int index) { return getIntDomainFieldBuilder().getBuilder(index); } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public org.tensorflow.metadata.v0.IntDomainOrBuilder getIntDomainOrBuilder( int index) { if (intDomainBuilder_ == null) { return intDomain_.get(index); } else { return intDomainBuilder_.getMessageOrBuilder(index); } } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public java.util.List getIntDomainOrBuilderList() { if (intDomainBuilder_ != null) { return intDomainBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(intDomain_); } } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public org.tensorflow.metadata.v0.IntDomain.Builder addIntDomainBuilder() { return getIntDomainFieldBuilder().addBuilder( org.tensorflow.metadata.v0.IntDomain.getDefaultInstance()); } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public org.tensorflow.metadata.v0.IntDomain.Builder addIntDomainBuilder( int index) { return getIntDomainFieldBuilder().addBuilder( index, org.tensorflow.metadata.v0.IntDomain.getDefaultInstance()); } /** *
     * top level int domains that can be reused by features
     * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ public java.util.List getIntDomainBuilderList() { return getIntDomainFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.IntDomain, org.tensorflow.metadata.v0.IntDomain.Builder, org.tensorflow.metadata.v0.IntDomainOrBuilder> getIntDomainFieldBuilder() { if (intDomainBuilder_ == null) { intDomainBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< org.tensorflow.metadata.v0.IntDomain, org.tensorflow.metadata.v0.IntDomain.Builder, org.tensorflow.metadata.v0.IntDomainOrBuilder>( intDomain_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); intDomain_ = null; } return intDomainBuilder_; } private com.google.protobuf.LazyStringArrayList defaultEnvironment_ = com.google.protobuf.LazyStringArrayList.emptyList(); private void ensureDefaultEnvironmentIsMutable() { if (!defaultEnvironment_.isModifiable()) { defaultEnvironment_ = new com.google.protobuf.LazyStringArrayList(defaultEnvironment_); } bitField0_ |= 0x00000040; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @return A list containing the defaultEnvironment. */ public com.google.protobuf.ProtocolStringList getDefaultEnvironmentList() { defaultEnvironment_.makeImmutable(); return defaultEnvironment_; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @return The count of defaultEnvironment. */ public int getDefaultEnvironmentCount() { return defaultEnvironment_.size(); } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param index The index of the element to return. * @return The defaultEnvironment at the given index. */ public java.lang.String getDefaultEnvironment(int index) { return defaultEnvironment_.get(index); } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param index The index of the value to return. * @return The bytes of the defaultEnvironment at the given index. */ public com.google.protobuf.ByteString getDefaultEnvironmentBytes(int index) { return defaultEnvironment_.getByteString(index); } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param index The index to set the value at. * @param value The defaultEnvironment to set. * @return This builder for chaining. */ public Builder setDefaultEnvironment( int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureDefaultEnvironmentIsMutable(); defaultEnvironment_.set(index, value); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param value The defaultEnvironment to add. * @return This builder for chaining. */ public Builder addDefaultEnvironment( java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureDefaultEnvironmentIsMutable(); defaultEnvironment_.add(value); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param values The defaultEnvironment to add. * @return This builder for chaining. */ public Builder addAllDefaultEnvironment( java.lang.Iterable values) { ensureDefaultEnvironmentIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll( values, defaultEnvironment_); bitField0_ |= 0x00000040; onChanged(); return this; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @return This builder for chaining. */ public Builder clearDefaultEnvironment() { defaultEnvironment_ = com.google.protobuf.LazyStringArrayList.emptyList(); bitField0_ = (bitField0_ & ~0x00000040);; onChanged(); return this; } /** *
     * Default environments for each feature.
     * An environment represents both a type of location (e.g. a server or phone)
     * and a time (e.g. right before model X is run). In the standard scenario,
     * 99% of the features should be in the default environments TRAINING,
     * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
     * (not at serving).
     * Other possible variations:
     * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
     *    and SERVING_SERVICE.
     * 2. If one is ensembling three models, where the predictions of the first
     *    three models are available for the ensemble model, there may be
     *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
     * See FeatureProto::not_in_environment and FeatureProto::in_environment.
     * 
* * repeated string default_environment = 5; * @param value The bytes of the defaultEnvironment to add. * @return This builder for chaining. */ public Builder addDefaultEnvironmentBytes( com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } ensureDefaultEnvironmentIsMutable(); defaultEnvironment_.add(value); bitField0_ |= 0x00000040; onChanged(); return this; } private boolean representVariableLengthAsRagged_ ; /** *
     * Whether to represent variable length features as RaggedTensors. By default
     * they are represented as ragged left-alighned SparseTensors. RaggedTensor
     * representation is more memory efficient. Therefore, turning this on will
     * likely yield data processing performance improvement.
     * Experimental and may be subject to change.
     * 
* * optional bool represent_variable_length_as_ragged = 14; * @return Whether the representVariableLengthAsRagged field is set. */ @java.lang.Override public boolean hasRepresentVariableLengthAsRagged() { return ((bitField0_ & 0x00000080) != 0); } /** *
     * Whether to represent variable length features as RaggedTensors. By default
     * they are represented as ragged left-alighned SparseTensors. RaggedTensor
     * representation is more memory efficient. Therefore, turning this on will
     * likely yield data processing performance improvement.
     * Experimental and may be subject to change.
     * 
* * optional bool represent_variable_length_as_ragged = 14; * @return The representVariableLengthAsRagged. */ @java.lang.Override public boolean getRepresentVariableLengthAsRagged() { return representVariableLengthAsRagged_; } /** *
     * Whether to represent variable length features as RaggedTensors. By default
     * they are represented as ragged left-alighned SparseTensors. RaggedTensor
     * representation is more memory efficient. Therefore, turning this on will
     * likely yield data processing performance improvement.
     * Experimental and may be subject to change.
     * 
* * optional bool represent_variable_length_as_ragged = 14; * @param value The representVariableLengthAsRagged to set. * @return This builder for chaining. */ public Builder setRepresentVariableLengthAsRagged(boolean value) { representVariableLengthAsRagged_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } /** *
     * Whether to represent variable length features as RaggedTensors. By default
     * they are represented as ragged left-alighned SparseTensors. RaggedTensor
     * representation is more memory efficient. Therefore, turning this on will
     * likely yield data processing performance improvement.
     * Experimental and may be subject to change.
     * 
* * optional bool represent_variable_length_as_ragged = 14; * @return This builder for chaining. */ public Builder clearRepresentVariableLengthAsRagged() { bitField0_ = (bitField0_ & ~0x00000080); representVariableLengthAsRagged_ = false; onChanged(); return this; } private org.tensorflow.metadata.v0.Annotation annotation_; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Annotation, org.tensorflow.metadata.v0.Annotation.Builder, org.tensorflow.metadata.v0.AnnotationOrBuilder> annotationBuilder_; /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return Whether the annotation field is set. */ public boolean hasAnnotation() { return ((bitField0_ & 0x00000100) != 0); } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return The annotation. */ public org.tensorflow.metadata.v0.Annotation getAnnotation() { if (annotationBuilder_ == null) { return annotation_ == null ? org.tensorflow.metadata.v0.Annotation.getDefaultInstance() : annotation_; } else { return annotationBuilder_.getMessage(); } } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public Builder setAnnotation(org.tensorflow.metadata.v0.Annotation value) { if (annotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } annotation_ = value; } else { annotationBuilder_.setMessage(value); } bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public Builder setAnnotation( org.tensorflow.metadata.v0.Annotation.Builder builderForValue) { if (annotationBuilder_ == null) { annotation_ = builderForValue.build(); } else { annotationBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000100; onChanged(); return this; } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public Builder mergeAnnotation(org.tensorflow.metadata.v0.Annotation value) { if (annotationBuilder_ == null) { if (((bitField0_ & 0x00000100) != 0) && annotation_ != null && annotation_ != org.tensorflow.metadata.v0.Annotation.getDefaultInstance()) { getAnnotationBuilder().mergeFrom(value); } else { annotation_ = value; } } else { annotationBuilder_.mergeFrom(value); } if (annotation_ != null) { bitField0_ |= 0x00000100; onChanged(); } return this; } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public Builder clearAnnotation() { bitField0_ = (bitField0_ & ~0x00000100); annotation_ = null; if (annotationBuilder_ != null) { annotationBuilder_.dispose(); annotationBuilder_ = null; } onChanged(); return this; } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public org.tensorflow.metadata.v0.Annotation.Builder getAnnotationBuilder() { bitField0_ |= 0x00000100; onChanged(); return getAnnotationFieldBuilder().getBuilder(); } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ public org.tensorflow.metadata.v0.AnnotationOrBuilder getAnnotationOrBuilder() { if (annotationBuilder_ != null) { return annotationBuilder_.getMessageOrBuilder(); } else { return annotation_ == null ? org.tensorflow.metadata.v0.Annotation.getDefaultInstance() : annotation_; } } /** *
     * Additional information about the schema as a whole. Features may also
     * be annotated individually.
     * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Annotation, org.tensorflow.metadata.v0.Annotation.Builder, org.tensorflow.metadata.v0.AnnotationOrBuilder> getAnnotationFieldBuilder() { if (annotationBuilder_ == null) { annotationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.Annotation, org.tensorflow.metadata.v0.Annotation.Builder, org.tensorflow.metadata.v0.AnnotationOrBuilder>( getAnnotation(), getParentForChildren(), isClean()); annotation_ = null; } return annotationBuilder_; } private org.tensorflow.metadata.v0.DatasetConstraints datasetConstraints_; private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.DatasetConstraints, org.tensorflow.metadata.v0.DatasetConstraints.Builder, org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder> datasetConstraintsBuilder_; /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return Whether the datasetConstraints field is set. */ public boolean hasDatasetConstraints() { return ((bitField0_ & 0x00000200) != 0); } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return The datasetConstraints. */ public org.tensorflow.metadata.v0.DatasetConstraints getDatasetConstraints() { if (datasetConstraintsBuilder_ == null) { return datasetConstraints_ == null ? org.tensorflow.metadata.v0.DatasetConstraints.getDefaultInstance() : datasetConstraints_; } else { return datasetConstraintsBuilder_.getMessage(); } } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public Builder setDatasetConstraints(org.tensorflow.metadata.v0.DatasetConstraints value) { if (datasetConstraintsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } datasetConstraints_ = value; } else { datasetConstraintsBuilder_.setMessage(value); } bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public Builder setDatasetConstraints( org.tensorflow.metadata.v0.DatasetConstraints.Builder builderForValue) { if (datasetConstraintsBuilder_ == null) { datasetConstraints_ = builderForValue.build(); } else { datasetConstraintsBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000200; onChanged(); return this; } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public Builder mergeDatasetConstraints(org.tensorflow.metadata.v0.DatasetConstraints value) { if (datasetConstraintsBuilder_ == null) { if (((bitField0_ & 0x00000200) != 0) && datasetConstraints_ != null && datasetConstraints_ != org.tensorflow.metadata.v0.DatasetConstraints.getDefaultInstance()) { getDatasetConstraintsBuilder().mergeFrom(value); } else { datasetConstraints_ = value; } } else { datasetConstraintsBuilder_.mergeFrom(value); } if (datasetConstraints_ != null) { bitField0_ |= 0x00000200; onChanged(); } return this; } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public Builder clearDatasetConstraints() { bitField0_ = (bitField0_ & ~0x00000200); datasetConstraints_ = null; if (datasetConstraintsBuilder_ != null) { datasetConstraintsBuilder_.dispose(); datasetConstraintsBuilder_ = null; } onChanged(); return this; } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public org.tensorflow.metadata.v0.DatasetConstraints.Builder getDatasetConstraintsBuilder() { bitField0_ |= 0x00000200; onChanged(); return getDatasetConstraintsFieldBuilder().getBuilder(); } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ public org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder getDatasetConstraintsOrBuilder() { if (datasetConstraintsBuilder_ != null) { return datasetConstraintsBuilder_.getMessageOrBuilder(); } else { return datasetConstraints_ == null ? org.tensorflow.metadata.v0.DatasetConstraints.getDefaultInstance() : datasetConstraints_; } } /** *
     * Dataset-level constraints. This is currently used for specifying
     * information about changes in num_examples.
     * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.DatasetConstraints, org.tensorflow.metadata.v0.DatasetConstraints.Builder, org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder> getDatasetConstraintsFieldBuilder() { if (datasetConstraintsBuilder_ == null) { datasetConstraintsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.metadata.v0.DatasetConstraints, org.tensorflow.metadata.v0.DatasetConstraints.Builder, org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder>( getDatasetConstraints(), getParentForChildren(), isClean()); datasetConstraints_ = null; } return datasetConstraintsBuilder_; } private static final class TensorRepresentationGroupConverter implements com.google.protobuf.MapFieldBuilder.Converter { @java.lang.Override public org.tensorflow.metadata.v0.TensorRepresentationGroup build(org.tensorflow.metadata.v0.TensorRepresentationGroupOrBuilder val) { if (val instanceof org.tensorflow.metadata.v0.TensorRepresentationGroup) { return (org.tensorflow.metadata.v0.TensorRepresentationGroup) val; } return ((org.tensorflow.metadata.v0.TensorRepresentationGroup.Builder) val).build(); } @java.lang.Override public com.google.protobuf.MapEntry defaultEntry() { return TensorRepresentationGroupDefaultEntryHolder.defaultEntry; } }; private static final TensorRepresentationGroupConverter tensorRepresentationGroupConverter = new TensorRepresentationGroupConverter(); private com.google.protobuf.MapFieldBuilder< java.lang.String, org.tensorflow.metadata.v0.TensorRepresentationGroupOrBuilder, org.tensorflow.metadata.v0.TensorRepresentationGroup, org.tensorflow.metadata.v0.TensorRepresentationGroup.Builder> tensorRepresentationGroup_; private com.google.protobuf.MapFieldBuilder internalGetTensorRepresentationGroup() { if (tensorRepresentationGroup_ == null) { return new com.google.protobuf.MapFieldBuilder<>(tensorRepresentationGroupConverter); } return tensorRepresentationGroup_; } private com.google.protobuf.MapFieldBuilder internalGetMutableTensorRepresentationGroup() { if (tensorRepresentationGroup_ == null) { tensorRepresentationGroup_ = new com.google.protobuf.MapFieldBuilder<>(tensorRepresentationGroupConverter); } bitField0_ |= 0x00000400; onChanged(); return tensorRepresentationGroup_; } public int getTensorRepresentationGroupCount() { return internalGetTensorRepresentationGroup().ensureBuilderMap().size(); } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public boolean containsTensorRepresentationGroup( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetTensorRepresentationGroup().ensureBuilderMap().containsKey(key); } /** * Use {@link #getTensorRepresentationGroupMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getTensorRepresentationGroup() { return getTensorRepresentationGroupMap(); } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public java.util.Map getTensorRepresentationGroupMap() { return internalGetTensorRepresentationGroup().getImmutableMap(); } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrDefault( java.lang.String key, /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMutableTensorRepresentationGroup().ensureBuilderMap(); return map.containsKey(key) ? tensorRepresentationGroupConverter.build(map.get(key)) : defaultValue; } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ @java.lang.Override public org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrThrow( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMutableTensorRepresentationGroup().ensureBuilderMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return tensorRepresentationGroupConverter.build(map.get(key)); } public Builder clearTensorRepresentationGroup() { bitField0_ = (bitField0_ & ~0x00000400); internalGetMutableTensorRepresentationGroup().clear(); return this; } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ public Builder removeTensorRepresentationGroup( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } internalGetMutableTensorRepresentationGroup().ensureBuilderMap() .remove(key); return this; } /** * Use alternate mutation accessors instead. */ @java.lang.Deprecated public java.util.Map getMutableTensorRepresentationGroup() { bitField0_ |= 0x00000400; return internalGetMutableTensorRepresentationGroup().ensureMessageMap(); } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ public Builder putTensorRepresentationGroup( java.lang.String key, org.tensorflow.metadata.v0.TensorRepresentationGroup value) { if (key == null) { throw new NullPointerException("map key"); } if (value == null) { throw new NullPointerException("map value"); } internalGetMutableTensorRepresentationGroup().ensureBuilderMap() .put(key, value); bitField0_ |= 0x00000400; return this; } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ public Builder putAllTensorRepresentationGroup( java.util.Map values) { for (java.util.Map.Entry e : values.entrySet()) { if (e.getKey() == null || e.getValue() == null) { throw new NullPointerException(); } } internalGetMutableTensorRepresentationGroup().ensureBuilderMap() .putAll(values); bitField0_ |= 0x00000400; return this; } /** *
     * TensorRepresentation groups. The keys are the names of the groups.
     * Key "" (empty string) denotes the "default" group, which is what should
     * be used when a group name is not provided.
     * See the documentation at TensorRepresentationGroup for more info.
     * Under development.
     * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ public org.tensorflow.metadata.v0.TensorRepresentationGroup.Builder putTensorRepresentationGroupBuilderIfAbsent( java.lang.String key) { java.util.Map builderMap = internalGetMutableTensorRepresentationGroup().ensureBuilderMap(); org.tensorflow.metadata.v0.TensorRepresentationGroupOrBuilder entry = builderMap.get(key); if (entry == null) { entry = org.tensorflow.metadata.v0.TensorRepresentationGroup.newBuilder(); builderMap.put(key, entry); } if (entry instanceof org.tensorflow.metadata.v0.TensorRepresentationGroup) { entry = ((org.tensorflow.metadata.v0.TensorRepresentationGroup) entry).toBuilder(); builderMap.put(key, entry); } return (org.tensorflow.metadata.v0.TensorRepresentationGroup.Builder) entry; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:tensorflow.metadata.v0.Schema) } // @@protoc_insertion_point(class_scope:tensorflow.metadata.v0.Schema) private static final org.tensorflow.metadata.v0.Schema DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new org.tensorflow.metadata.v0.Schema(); } public static org.tensorflow.metadata.v0.Schema getDefaultInstance() { return DEFAULT_INSTANCE; } @java.lang.Deprecated public static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Schema parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public org.tensorflow.metadata.v0.Schema getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy