All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.tensorflow.metadata.v0.SchemaOrBuilder Maven / Gradle / Ivy

The newest version!
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: tensorflow_metadata/proto/v0/schema.proto

// Protobuf Java Version: 3.25.4
package org.tensorflow.metadata.v0;

public interface SchemaOrBuilder extends
    // @@protoc_insertion_point(interface_extends:tensorflow.metadata.v0.Schema)
    com.google.protobuf.MessageOrBuilder {

  /**
   * 
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ java.util.List getFeatureList(); /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ org.tensorflow.metadata.v0.Feature getFeature(int index); /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ int getFeatureCount(); /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ java.util.List getFeatureOrBuilderList(); /** *
   * Features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.Feature feature = 1; */ org.tensorflow.metadata.v0.FeatureOrBuilder getFeatureOrBuilder( int index); /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ java.util.List getSparseFeatureList(); /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ org.tensorflow.metadata.v0.SparseFeature getSparseFeature(int index); /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ int getSparseFeatureCount(); /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ java.util.List getSparseFeatureOrBuilderList(); /** *
   * Sparse features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.SparseFeature sparse_feature = 6; */ org.tensorflow.metadata.v0.SparseFeatureOrBuilder getSparseFeatureOrBuilder( int index); /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ java.util.List getWeightedFeatureList(); /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ org.tensorflow.metadata.v0.WeightedFeature getWeightedFeature(int index); /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ int getWeightedFeatureCount(); /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ java.util.List getWeightedFeatureOrBuilderList(); /** *
   * Weighted features described in this schema.
   * 
* * repeated .tensorflow.metadata.v0.WeightedFeature weighted_feature = 12; */ org.tensorflow.metadata.v0.WeightedFeatureOrBuilder getWeightedFeatureOrBuilder( int index); /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ java.util.List getStringDomainList(); /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ org.tensorflow.metadata.v0.StringDomain getStringDomain(int index); /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ int getStringDomainCount(); /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ java.util.List getStringDomainOrBuilderList(); /** *
   * declared as top-level features in <feature>.
   * String domains referenced in the features.
   * 
* * repeated .tensorflow.metadata.v0.StringDomain string_domain = 4; */ org.tensorflow.metadata.v0.StringDomainOrBuilder getStringDomainOrBuilder( int index); /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ java.util.List getFloatDomainList(); /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ org.tensorflow.metadata.v0.FloatDomain getFloatDomain(int index); /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ int getFloatDomainCount(); /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ java.util.List getFloatDomainOrBuilderList(); /** *
   * top level float domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.FloatDomain float_domain = 9; */ org.tensorflow.metadata.v0.FloatDomainOrBuilder getFloatDomainOrBuilder( int index); /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ java.util.List getIntDomainList(); /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ org.tensorflow.metadata.v0.IntDomain getIntDomain(int index); /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ int getIntDomainCount(); /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ java.util.List getIntDomainOrBuilderList(); /** *
   * top level int domains that can be reused by features
   * 
* * repeated .tensorflow.metadata.v0.IntDomain int_domain = 10; */ org.tensorflow.metadata.v0.IntDomainOrBuilder getIntDomainOrBuilder( int index); /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @return A list containing the defaultEnvironment. */ java.util.List getDefaultEnvironmentList(); /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @return The count of defaultEnvironment. */ int getDefaultEnvironmentCount(); /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @param index The index of the element to return. * @return The defaultEnvironment at the given index. */ java.lang.String getDefaultEnvironment(int index); /** *
   * Default environments for each feature.
   * An environment represents both a type of location (e.g. a server or phone)
   * and a time (e.g. right before model X is run). In the standard scenario,
   * 99% of the features should be in the default environments TRAINING,
   * SERVING, and the LABEL (or labels) AND WEIGHT is only available at TRAINING
   * (not at serving).
   * Other possible variations:
   * 1. There may be TRAINING_MOBILE, SERVING_MOBILE, TRAINING_SERVICE,
   *    and SERVING_SERVICE.
   * 2. If one is ensembling three models, where the predictions of the first
   *    three models are available for the ensemble model, there may be
   *    TRAINING, SERVING_INITIAL, SERVING_ENSEMBLE.
   * See FeatureProto::not_in_environment and FeatureProto::in_environment.
   * 
* * repeated string default_environment = 5; * @param index The index of the value to return. * @return The bytes of the defaultEnvironment at the given index. */ com.google.protobuf.ByteString getDefaultEnvironmentBytes(int index); /** *
   * Whether to represent variable length features as RaggedTensors. By default
   * they are represented as ragged left-alighned SparseTensors. RaggedTensor
   * representation is more memory efficient. Therefore, turning this on will
   * likely yield data processing performance improvement.
   * Experimental and may be subject to change.
   * 
* * optional bool represent_variable_length_as_ragged = 14; * @return Whether the representVariableLengthAsRagged field is set. */ boolean hasRepresentVariableLengthAsRagged(); /** *
   * Whether to represent variable length features as RaggedTensors. By default
   * they are represented as ragged left-alighned SparseTensors. RaggedTensor
   * representation is more memory efficient. Therefore, turning this on will
   * likely yield data processing performance improvement.
   * Experimental and may be subject to change.
   * 
* * optional bool represent_variable_length_as_ragged = 14; * @return The representVariableLengthAsRagged. */ boolean getRepresentVariableLengthAsRagged(); /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return Whether the annotation field is set. */ boolean hasAnnotation(); /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; * @return The annotation. */ org.tensorflow.metadata.v0.Annotation getAnnotation(); /** *
   * Additional information about the schema as a whole. Features may also
   * be annotated individually.
   * 
* * optional .tensorflow.metadata.v0.Annotation annotation = 8; */ org.tensorflow.metadata.v0.AnnotationOrBuilder getAnnotationOrBuilder(); /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return Whether the datasetConstraints field is set. */ boolean hasDatasetConstraints(); /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; * @return The datasetConstraints. */ org.tensorflow.metadata.v0.DatasetConstraints getDatasetConstraints(); /** *
   * Dataset-level constraints. This is currently used for specifying
   * information about changes in num_examples.
   * 
* * optional .tensorflow.metadata.v0.DatasetConstraints dataset_constraints = 11; */ org.tensorflow.metadata.v0.DatasetConstraintsOrBuilder getDatasetConstraintsOrBuilder(); /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ int getTensorRepresentationGroupCount(); /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ boolean containsTensorRepresentationGroup( java.lang.String key); /** * Use {@link #getTensorRepresentationGroupMap()} instead. */ @java.lang.Deprecated java.util.Map getTensorRepresentationGroup(); /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ java.util.Map getTensorRepresentationGroupMap(); /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrDefault( java.lang.String key, /* nullable */ org.tensorflow.metadata.v0.TensorRepresentationGroup defaultValue); /** *
   * TensorRepresentation groups. The keys are the names of the groups.
   * Key "" (empty string) denotes the "default" group, which is what should
   * be used when a group name is not provided.
   * See the documentation at TensorRepresentationGroup for more info.
   * Under development.
   * 
* * map<string, .tensorflow.metadata.v0.TensorRepresentationGroup> tensor_representation_group = 13; */ org.tensorflow.metadata.v0.TensorRepresentationGroup getTensorRepresentationGroupOrThrow( java.lang.String key); }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy