All Downloads are FREE. Search and download functionalities are using the official Maven repository.

okhttp3.internal.Util Maven / Gradle / Ivy

There is a newer version: 5.0.0-alpha.14
Show newest version
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package okhttp3.internal;

import java.io.Closeable;
import java.io.IOException;
import java.io.InterruptedIOException;
import java.net.IDN;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.UnknownHostException;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.List;
import java.util.Locale;
import java.util.TimeZone;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.TimeUnit;
import java.util.regex.Pattern;
import javax.annotation.Nullable;
import okhttp3.HttpUrl;
import okhttp3.RequestBody;
import okhttp3.ResponseBody;
import okio.Buffer;
import okio.BufferedSource;
import okio.ByteString;
import okio.Source;

/** Junk drawer of utility methods. */
public final class Util {
  public static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
  public static final String[] EMPTY_STRING_ARRAY = new String[0];

  public static final ResponseBody EMPTY_RESPONSE = ResponseBody.create(null, EMPTY_BYTE_ARRAY);
  public static final RequestBody EMPTY_REQUEST = RequestBody.create(null, EMPTY_BYTE_ARRAY);

  private static final ByteString UTF_8_BOM = ByteString.decodeHex("efbbbf");
  private static final ByteString UTF_16_BE_BOM = ByteString.decodeHex("feff");
  private static final ByteString UTF_16_LE_BOM = ByteString.decodeHex("fffe");
  private static final ByteString UTF_32_BE_BOM = ByteString.decodeHex("0000ffff");
  private static final ByteString UTF_32_LE_BOM = ByteString.decodeHex("ffff0000");

  public static final Charset UTF_8 = Charset.forName("UTF-8");
  public static final Charset ISO_8859_1 = Charset.forName("ISO-8859-1");
  private static final Charset UTF_16_BE = Charset.forName("UTF-16BE");
  private static final Charset UTF_16_LE = Charset.forName("UTF-16LE");
  private static final Charset UTF_32_BE = Charset.forName("UTF-32BE");
  private static final Charset UTF_32_LE = Charset.forName("UTF-32LE");

  /** GMT and UTC are equivalent for our purposes. */
  public static final TimeZone UTC = TimeZone.getTimeZone("GMT");

  public static final Comparator NATURAL_ORDER = new Comparator() {
    @Override public int compare(String a, String b) {
      return a.compareTo(b);
    }
  };

  /**
   * Quick and dirty pattern to differentiate IP addresses from hostnames. This is an approximation
   * of Android's private InetAddress#isNumeric API.
   *
   * 

This matches IPv6 addresses as a hex string containing at least one colon, and possibly * including dots after the first colon. It matches IPv4 addresses as strings containing only * decimal digits and dots. This pattern matches strings like "a:.23" and "54" that are neither IP * addresses nor hostnames; they will be verified as IP addresses (which is a more strict * verification). */ private static final Pattern VERIFY_AS_IP_ADDRESS = Pattern.compile( "([0-9a-fA-F]*:[0-9a-fA-F:.]*)|([\\d.]+)"); private Util() { } public static void checkOffsetAndCount(long arrayLength, long offset, long count) { if ((offset | count) < 0 || offset > arrayLength || arrayLength - offset < count) { throw new ArrayIndexOutOfBoundsException(); } } /** Returns true if two possibly-null objects are equal. */ public static boolean equal(Object a, Object b) { return a == b || (a != null && a.equals(b)); } /** * Closes {@code closeable}, ignoring any checked exceptions. Does nothing if {@code closeable} is * null. */ public static void closeQuietly(Closeable closeable) { if (closeable != null) { try { closeable.close(); } catch (RuntimeException rethrown) { throw rethrown; } catch (Exception ignored) { } } } /** * Closes {@code socket}, ignoring any checked exceptions. Does nothing if {@code socket} is * null. */ public static void closeQuietly(Socket socket) { if (socket != null) { try { socket.close(); } catch (AssertionError e) { if (!isAndroidGetsocknameError(e)) throw e; } catch (RuntimeException rethrown) { throw rethrown; } catch (Exception ignored) { } } } /** * Closes {@code serverSocket}, ignoring any checked exceptions. Does nothing if {@code * serverSocket} is null. */ public static void closeQuietly(ServerSocket serverSocket) { if (serverSocket != null) { try { serverSocket.close(); } catch (RuntimeException rethrown) { throw rethrown; } catch (Exception ignored) { } } } /** * Attempts to exhaust {@code source}, returning true if successful. This is useful when reading a * complete source is helpful, such as when doing so completes a cache body or frees a socket * connection for reuse. */ public static boolean discard(Source source, int timeout, TimeUnit timeUnit) { try { return skipAll(source, timeout, timeUnit); } catch (IOException e) { return false; } } /** * Reads until {@code in} is exhausted or the deadline has been reached. This is careful to not * extend the deadline if one exists already. */ public static boolean skipAll(Source source, int duration, TimeUnit timeUnit) throws IOException { long now = System.nanoTime(); long originalDuration = source.timeout().hasDeadline() ? source.timeout().deadlineNanoTime() - now : Long.MAX_VALUE; source.timeout().deadlineNanoTime(now + Math.min(originalDuration, timeUnit.toNanos(duration))); try { Buffer skipBuffer = new Buffer(); while (source.read(skipBuffer, 8192) != -1) { skipBuffer.clear(); } return true; // Success! The source has been exhausted. } catch (InterruptedIOException e) { return false; // We ran out of time before exhausting the source. } finally { if (originalDuration == Long.MAX_VALUE) { source.timeout().clearDeadline(); } else { source.timeout().deadlineNanoTime(now + originalDuration); } } } /** Returns an immutable copy of {@code list}. */ public static List immutableList(List list) { return Collections.unmodifiableList(new ArrayList<>(list)); } /** Returns an immutable list containing {@code elements}. */ public static List immutableList(T... elements) { return Collections.unmodifiableList(Arrays.asList(elements.clone())); } public static ThreadFactory threadFactory(final String name, final boolean daemon) { return new ThreadFactory() { @Override public Thread newThread(Runnable runnable) { Thread result = new Thread(runnable, name); result.setDaemon(daemon); return result; } }; } /** * Returns an array containing only elements found in {@code first} and also in {@code * second}. The returned elements are in the same order as in {@code first}. */ @SuppressWarnings("unchecked") public static String[] intersect( Comparator comparator, String[] first, String[] second) { List result = new ArrayList<>(); for (String a : first) { for (String b : second) { if (comparator.compare(a, b) == 0) { result.add(a); break; } } } return result.toArray(new String[result.size()]); } /** * Returns true if there is an element in {@code first} that is also in {@code second}. This * method terminates if any intersection is found. The sizes of both arguments are assumed to be * so small, and the likelihood of an intersection so great, that it is not worth the CPU cost of * sorting or the memory cost of hashing. */ public static boolean nonEmptyIntersection( Comparator comparator, String[] first, String[] second) { if (first == null || second == null || first.length == 0 || second.length == 0) { return false; } for (String a : first) { for (String b : second) { if (comparator.compare(a, b) == 0) { return true; } } } return false; } public static String hostHeader(HttpUrl url, boolean includeDefaultPort) { String host = url.host().contains(":") ? "[" + url.host() + "]" : url.host(); return includeDefaultPort || url.port() != HttpUrl.defaultPort(url.scheme()) ? host + ":" + url.port() : host; } /** Returns {@code s} with control characters and non-ASCII characters replaced with '?'. */ public static String toHumanReadableAscii(String s) { for (int i = 0, length = s.length(), c; i < length; i += Character.charCount(c)) { c = s.codePointAt(i); if (c > '\u001f' && c < '\u007f') continue; Buffer buffer = new Buffer(); buffer.writeUtf8(s, 0, i); for (int j = i; j < length; j += Character.charCount(c)) { c = s.codePointAt(j); buffer.writeUtf8CodePoint(c > '\u001f' && c < '\u007f' ? c : '?'); } return buffer.readUtf8(); } return s; } /** * Returns true if {@code e} is due to a firmware bug fixed after Android 4.2.2. * https://code.google.com/p/android/issues/detail?id=54072 */ public static boolean isAndroidGetsocknameError(AssertionError e) { return e.getCause() != null && e.getMessage() != null && e.getMessage().contains("getsockname failed"); } public static int indexOf(Comparator comparator, String[] array, String value) { for (int i = 0, size = array.length; i < size; i++) { if (comparator.compare(array[i], value) == 0) return i; } return -1; } public static String[] concat(String[] array, String value) { String[] result = new String[array.length + 1]; System.arraycopy(array, 0, result, 0, array.length); result[result.length - 1] = value; return result; } /** * Increments {@code pos} until {@code input[pos]} is not ASCII whitespace. Stops at {@code * limit}. */ public static int skipLeadingAsciiWhitespace(String input, int pos, int limit) { for (int i = pos; i < limit; i++) { switch (input.charAt(i)) { case '\t': case '\n': case '\f': case '\r': case ' ': continue; default: return i; } } return limit; } /** * Decrements {@code limit} until {@code input[limit - 1]} is not ASCII whitespace. Stops at * {@code pos}. */ public static int skipTrailingAsciiWhitespace(String input, int pos, int limit) { for (int i = limit - 1; i >= pos; i--) { switch (input.charAt(i)) { case '\t': case '\n': case '\f': case '\r': case ' ': continue; default: return i + 1; } } return pos; } /** Equivalent to {@code string.substring(pos, limit).trim()}. */ public static String trimSubstring(String string, int pos, int limit) { int start = skipLeadingAsciiWhitespace(string, pos, limit); int end = skipTrailingAsciiWhitespace(string, start, limit); return string.substring(start, end); } /** * Returns the index of the first character in {@code input} that contains a character in {@code * delimiters}. Returns limit if there is no such character. */ public static int delimiterOffset(String input, int pos, int limit, String delimiters) { for (int i = pos; i < limit; i++) { if (delimiters.indexOf(input.charAt(i)) != -1) return i; } return limit; } /** * Returns the index of the first character in {@code input} that is {@code delimiter}. Returns * limit if there is no such character. */ public static int delimiterOffset(String input, int pos, int limit, char delimiter) { for (int i = pos; i < limit; i++) { if (input.charAt(i) == delimiter) return i; } return limit; } /** * If {@code host} is an IP address, this returns the IP address in canonical form. * *

Otherwise this performs IDN ToASCII encoding and canonicalize the result to lowercase. For * example this converts {@code ☃.net} to {@code xn--n3h.net}, and {@code WwW.GoOgLe.cOm} to * {@code www.google.com}. {@code null} will be returned if the host cannot be ToASCII encoded or * if the result contains unsupported ASCII characters. */ public static String canonicalizeHost(String host) { // If the input contains a :, it’s an IPv6 address. if (host.contains(":")) { // If the input is encased in square braces "[...]", drop 'em. InetAddress inetAddress = host.startsWith("[") && host.endsWith("]") ? decodeIpv6(host, 1, host.length() - 1) : decodeIpv6(host, 0, host.length()); if (inetAddress == null) return null; byte[] address = inetAddress.getAddress(); if (address.length == 16) return inet6AddressToAscii(address); throw new AssertionError("Invalid IPv6 address: '" + host + "'"); } try { String result = IDN.toASCII(host).toLowerCase(Locale.US); if (result.isEmpty()) return null; // Confirm that the IDN ToASCII result doesn't contain any illegal characters. if (containsInvalidHostnameAsciiCodes(result)) { return null; } // TODO: implement all label limits. return result; } catch (IllegalArgumentException e) { return null; } } private static boolean containsInvalidHostnameAsciiCodes(String hostnameAscii) { for (int i = 0; i < hostnameAscii.length(); i++) { char c = hostnameAscii.charAt(i); // The WHATWG Host parsing rules accepts some character codes which are invalid by // definition for OkHttp's host header checks (and the WHATWG Host syntax definition). Here // we rule out characters that would cause problems in host headers. if (c <= '\u001f' || c >= '\u007f') { return true; } // Check for the characters mentioned in the WHATWG Host parsing spec: // U+0000, U+0009, U+000A, U+000D, U+0020, "#", "%", "/", ":", "?", "@", "[", "\", and "]" // (excluding the characters covered above). if (" #%/:?@[\\]".indexOf(c) != -1) { return true; } } return false; } /** * Returns the index of the first character in {@code input} that is either a control character * (like {@code \u0000 or \n}) or a non-ASCII character. Returns -1 if {@code input} has no such * characters. */ public static int indexOfControlOrNonAscii(String input) { for (int i = 0, length = input.length(); i < length; i++) { char c = input.charAt(i); if (c <= '\u001f' || c >= '\u007f') { return i; } } return -1; } /** Returns true if {@code host} is not a host name and might be an IP address. */ public static boolean verifyAsIpAddress(String host) { return VERIFY_AS_IP_ADDRESS.matcher(host).matches(); } /** Returns a {@link Locale#US} formatted {@link String}. */ public static String format(String format, Object... args) { return String.format(Locale.US, format, args); } public static Charset bomAwareCharset(BufferedSource source, Charset charset) throws IOException { if (source.rangeEquals(0, UTF_8_BOM)) { source.skip(UTF_8_BOM.size()); return UTF_8; } if (source.rangeEquals(0, UTF_16_BE_BOM)) { source.skip(UTF_16_BE_BOM.size()); return UTF_16_BE; } if (source.rangeEquals(0, UTF_16_LE_BOM)) { source.skip(UTF_16_LE_BOM.size()); return UTF_16_LE; } if (source.rangeEquals(0, UTF_32_BE_BOM)) { source.skip(UTF_32_BE_BOM.size()); return UTF_32_BE; } if (source.rangeEquals(0, UTF_32_LE_BOM)) { source.skip(UTF_32_LE_BOM.size()); return UTF_32_LE; } return charset; } public static int checkDuration(String name, long duration, TimeUnit unit) { if (duration < 0) throw new IllegalArgumentException(name + " < 0"); if (unit == null) throw new NullPointerException("unit == null"); long millis = unit.toMillis(duration); if (millis > Integer.MAX_VALUE) throw new IllegalArgumentException(name + " too large."); if (millis == 0 && duration > 0) throw new IllegalArgumentException(name + " too small."); return (int) millis; } public static AssertionError assertionError(String message, Exception e) { return (AssertionError) new AssertionError(message).initCause(e); } public static int decodeHexDigit(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'a' && c <= 'f') return c - 'a' + 10; if (c >= 'A' && c <= 'F') return c - 'A' + 10; return -1; } /** Decodes an IPv6 address like 1111:2222:3333:4444:5555:6666:7777:8888 or ::1. */ private static @Nullable InetAddress decodeIpv6(String input, int pos, int limit) { byte[] address = new byte[16]; int b = 0; int compress = -1; int groupOffset = -1; for (int i = pos; i < limit; ) { if (b == address.length) return null; // Too many groups. // Read a delimiter. if (i + 2 <= limit && input.regionMatches(i, "::", 0, 2)) { // Compression "::" delimiter, which is anywhere in the input, including its prefix. if (compress != -1) return null; // Multiple "::" delimiters. i += 2; b += 2; compress = b; if (i == limit) break; } else if (b != 0) { // Group separator ":" delimiter. if (input.regionMatches(i, ":", 0, 1)) { i++; } else if (input.regionMatches(i, ".", 0, 1)) { // If we see a '.', rewind to the beginning of the previous group and parse as IPv4. if (!decodeIpv4Suffix(input, groupOffset, limit, address, b - 2)) return null; b += 2; // We rewound two bytes and then added four. break; } else { return null; // Wrong delimiter. } } // Read a group, one to four hex digits. int value = 0; groupOffset = i; for (; i < limit; i++) { char c = input.charAt(i); int hexDigit = decodeHexDigit(c); if (hexDigit == -1) break; value = (value << 4) + hexDigit; } int groupLength = i - groupOffset; if (groupLength == 0 || groupLength > 4) return null; // Group is the wrong size. // We've successfully read a group. Assign its value to our byte array. address[b++] = (byte) ((value >>> 8) & 0xff); address[b++] = (byte) (value & 0xff); } // All done. If compression happened, we need to move bytes to the right place in the // address. Here's a sample: // // input: "1111:2222:3333::7777:8888" // before: { 11, 11, 22, 22, 33, 33, 00, 00, 77, 77, 88, 88, 00, 00, 00, 00 } // compress: 6 // b: 10 // after: { 11, 11, 22, 22, 33, 33, 00, 00, 00, 00, 00, 00, 77, 77, 88, 88 } // if (b != address.length) { if (compress == -1) return null; // Address didn't have compression or enough groups. System.arraycopy(address, compress, address, address.length - (b - compress), b - compress); Arrays.fill(address, compress, compress + (address.length - b), (byte) 0); } try { return InetAddress.getByAddress(address); } catch (UnknownHostException e) { throw new AssertionError(); } } /** Decodes an IPv4 address suffix of an IPv6 address, like 1111::5555:6666:192.168.0.1. */ private static boolean decodeIpv4Suffix( String input, int pos, int limit, byte[] address, int addressOffset) { int b = addressOffset; for (int i = pos; i < limit; ) { if (b == address.length) return false; // Too many groups. // Read a delimiter. if (b != addressOffset) { if (input.charAt(i) != '.') return false; // Wrong delimiter. i++; } // Read 1 or more decimal digits for a value in 0..255. int value = 0; int groupOffset = i; for (; i < limit; i++) { char c = input.charAt(i); if (c < '0' || c > '9') break; if (value == 0 && groupOffset != i) return false; // Reject unnecessary leading '0's. value = (value * 10) + c - '0'; if (value > 255) return false; // Value out of range. } int groupLength = i - groupOffset; if (groupLength == 0) return false; // No digits. // We've successfully read a byte. address[b++] = (byte) value; } if (b != addressOffset + 4) return false; // Too few groups. We wanted exactly four. return true; // Success. } /** Encodes an IPv6 address in canonical form according to RFC 5952. */ private static String inet6AddressToAscii(byte[] address) { // Go through the address looking for the longest run of 0s. Each group is 2-bytes. // A run must be longer than one group (section 4.2.2). // If there are multiple equal runs, the first one must be used (section 4.2.3). int longestRunOffset = -1; int longestRunLength = 0; for (int i = 0; i < address.length; i += 2) { int currentRunOffset = i; while (i < 16 && address[i] == 0 && address[i + 1] == 0) { i += 2; } int currentRunLength = i - currentRunOffset; if (currentRunLength > longestRunLength && currentRunLength >= 4) { longestRunOffset = currentRunOffset; longestRunLength = currentRunLength; } } // Emit each 2-byte group in hex, separated by ':'. The longest run of zeroes is "::". Buffer result = new Buffer(); for (int i = 0; i < address.length; ) { if (i == longestRunOffset) { result.writeByte(':'); i += longestRunLength; if (i == 16) result.writeByte(':'); } else { if (i > 0) result.writeByte(':'); int group = (address[i] & 0xff) << 8 | address[i + 1] & 0xff; result.writeHexadecimalUnsignedLong(group); i += 2; } } return result.readUtf8(); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy