All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.index.sasi.utils.trie.AbstractPatriciaTrie Maven / Gradle / Ivy

/*
 * Copyright 2005-2010 Roger Kapsi, Sam Berlin
 *
 *   Licensed under the Apache License, Version 2.0 (the "License");
 *   you may not use this file except in compliance with the License.
 *   You may obtain a copy of the License at
 *
 *       http://www.apache.org/licenses/LICENSE-2.0
 *
 *   Unless required by applicable law or agreed to in writing, software
 *   distributed under the License is distributed on an "AS IS" BASIS,
 *   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *   See the License for the specific language governing permissions and
 *   limitations under the License.
 */

/**
 * This class is taken from https://github.com/rkapsi/patricia-trie (v0.6), and slightly modified
 * to correspond to Cassandra code style, as the only Patricia Trie implementation,
 * which supports pluggable key comparators (e.g. commons-collections PatriciaTrie (which is based
 * on rkapsi/patricia-trie project) only supports String keys)
 * but unfortunately is not deployed to the maven central as a downloadable artifact.
 */

package org.apache.cassandra.index.sasi.utils.trie;

import java.util.AbstractCollection;
import java.util.AbstractSet;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Iterator;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;

import org.apache.cassandra.index.sasi.utils.trie.Cursor.Decision;

/**
 * This class implements the base PATRICIA algorithm and everything that
 * is related to the {@link Map} interface.
 */
abstract class AbstractPatriciaTrie extends AbstractTrie
{
    private static final long serialVersionUID = -2303909182832019043L;

    /**
     * The root node of the {@link Trie}.
     */
    final TrieEntry root = new TrieEntry<>(null, null, -1);

    /**
     * Each of these fields are initialized to contain an instance of the
     * appropriate view the first time this view is requested. The views are
     * stateless, so there's no reason to create more than one of each.
     */
    private transient volatile Set keySet;
    private transient volatile Collection values;
    private transient volatile Set> entrySet;

    /**
     * The current size of the {@link Trie}
     */
    private int size = 0;

    /**
     * The number of times this {@link Trie} has been modified.
     * It's used to detect concurrent modifications and fail-fast
     * the {@link Iterator}s.
     */
    transient int modCount = 0;

    public AbstractPatriciaTrie(KeyAnalyzer keyAnalyzer)
    {
        super(keyAnalyzer);
    }

    public AbstractPatriciaTrie(KeyAnalyzer keyAnalyzer, Map m)
    {
        super(keyAnalyzer);
        putAll(m);
    }

    @Override
    public void clear()
    {
        root.key = null;
        root.bitIndex = -1;
        root.value = null;

        root.parent = null;
        root.left = root;
        root.right = null;
        root.predecessor = root;

        size = 0;
        incrementModCount();
    }

    @Override
    public int size()
    {
        return size;
    }

    /**
     * A helper method to increment the {@link Trie} size
     * and the modification counter.
     */
    void incrementSize()
    {
        size++;
        incrementModCount();
    }

    /**
     * A helper method to decrement the {@link Trie} size
     * and increment the modification counter.
     */
    void decrementSize()
    {
        size--;
        incrementModCount();
    }

    /**
     * A helper method to increment the modification counter.
     */
    private void incrementModCount()
    {
        ++modCount;
    }

    @Override
    public V put(K key, V value)
    {
        if (key == null)
            throw new NullPointerException("Key cannot be null");

        int lengthInBits = lengthInBits(key);

        // The only place to store a key with a length
        // of zero bits is the root node
        if (lengthInBits == 0)
        {
            if (root.isEmpty())
                incrementSize();
            else
                incrementModCount();

            return root.setKeyValue(key, value);
        }

        TrieEntry found = getNearestEntryForKey(key);
        if (compareKeys(key, found.key))
        {
            if (found.isEmpty()) // <- must be the root
                incrementSize();
            else
                incrementModCount();

            return found.setKeyValue(key, value);
        }

        int bitIndex = bitIndex(key, found.key);
        if (!Tries.isOutOfBoundsIndex(bitIndex))
        {
            if (Tries.isValidBitIndex(bitIndex)) // in 99.999...9% the case
            {
                /* NEW KEY+VALUE TUPLE */
                TrieEntry t = new TrieEntry<>(key, value, bitIndex);
                addEntry(t);
                incrementSize();
                return null;
            }
            else if (Tries.isNullBitKey(bitIndex))
            {
                // A bits of the Key are zero. The only place to
                // store such a Key is the root Node!

                /* NULL BIT KEY */
                if (root.isEmpty())
                    incrementSize();
                else
                    incrementModCount();

                return root.setKeyValue(key, value);

            }
            else if (Tries.isEqualBitKey(bitIndex))
            {
                // This is a very special and rare case.

                /* REPLACE OLD KEY+VALUE */
                if (found != root)
                {
                    incrementModCount();
                    return found.setKeyValue(key, value);
                }
            }
        }

        throw new IndexOutOfBoundsException("Failed to put: "
                + key + " -> " + value + ", " + bitIndex);
    }

    /**
     * Adds the given {@link TrieEntry} to the {@link Trie}
     */
    TrieEntry addEntry(TrieEntry entry)
    {
        TrieEntry current = root.left;
        TrieEntry path = root;

        while(true)
        {
            if (current.bitIndex >= entry.bitIndex || current.bitIndex <= path.bitIndex)
            {
                entry.predecessor = entry;

                if (!isBitSet(entry.key, entry.bitIndex))
                {
                    entry.left = entry;
                    entry.right = current;
                }
                else
                {
                    entry.left = current;
                    entry.right = entry;
                }

                entry.parent = path;
                if (current.bitIndex >= entry.bitIndex)
                    current.parent = entry;

                // if we inserted an uplink, set the predecessor on it
                if (current.bitIndex <= path.bitIndex)
                    current.predecessor = entry;

                if (path == root || !isBitSet(entry.key, path.bitIndex))
                    path.left = entry;
                else
                    path.right = entry;

                return entry;
            }

            path = current;

            current = !isBitSet(entry.key, current.bitIndex)
                       ? current.left : current.right;
        }
    }

    @Override
    public V get(Object k)
    {
        TrieEntry entry = getEntry(k);
        return entry != null ? entry.getValue() : null;
    }

    /**
     * Returns the entry associated with the specified key in the
     * AbstractPatriciaTrie.  Returns null if the map contains no mapping
     * for this key.
     *
     * This may throw ClassCastException if the object is not of type K.
     */
    TrieEntry getEntry(Object k)
    {
        K key = Tries.cast(k);
        if (key == null)
            return null;

        TrieEntry entry = getNearestEntryForKey(key);
        return !entry.isEmpty() && compareKeys(key, entry.key) ? entry : null;
    }

    @Override
    public Map.Entry select(K key)
    {
        Reference> reference = new Reference<>();
        return !selectR(root.left, -1, key, reference) ? reference.get() : null;
    }

    @Override
    public Map.Entry select(K key, Cursor cursor)
    {
        Reference> reference = new Reference<>();
        selectR(root.left, -1, key, cursor, reference);
        return reference.get();
    }

    /**
     * This is equivalent to the other {@link #selectR(TrieEntry, int,
     * K, Cursor, Reference)} method but without its overhead
     * because we're selecting only one best matching Entry from the
     * {@link Trie}.
     */
    private boolean selectR(TrieEntry h, int bitIndex, final K key, final Reference> reference)
    {
        if (h.bitIndex <= bitIndex)
        {
            // If we hit the root Node and it is empty
            // we have to look for an alternative best
            // matching node.
            if (!h.isEmpty())
            {
                reference.set(h);
                return false;
            }
            return true;
        }

        if (!isBitSet(key, h.bitIndex))
        {
            if (selectR(h.left, h.bitIndex, key, reference))
            {
                return selectR(h.right, h.bitIndex, key, reference);
            }
        }
        else
        {
            if (selectR(h.right, h.bitIndex, key, reference))
            {
                return selectR(h.left, h.bitIndex, key, reference);
            }
        }

        return false;
    }

    /**
     *
     */
    private boolean selectR(TrieEntry h, int bitIndex,
                            final K key, final Cursor cursor,
                            final Reference> reference)
    {
        if (h.bitIndex <= bitIndex)
        {
            if (!h.isEmpty())
            {
                Decision decision = cursor.select(h);
                switch(decision)
                {
                    case REMOVE:
                        throw new UnsupportedOperationException("Cannot remove during select");

                    case EXIT:
                        reference.set(h);
                        return false; // exit

                    case REMOVE_AND_EXIT:
                        TrieEntry entry = new TrieEntry<>(h.getKey(), h.getValue(), -1);
                        reference.set(entry);
                        removeEntry(h);
                        return false;

                    case CONTINUE:
                        // fall through.
                }
            }

            return true; // continue
        }

        if (!isBitSet(key, h.bitIndex))
        {
            if (selectR(h.left, h.bitIndex, key, cursor, reference))
            {
                return selectR(h.right, h.bitIndex, key, cursor, reference);
            }
        }
        else
        {
            if (selectR(h.right, h.bitIndex, key, cursor, reference))
            {
                return selectR(h.left, h.bitIndex, key, cursor, reference);
            }
        }

        return false;
    }

    @Override
    public Map.Entry traverse(Cursor cursor)
    {
        TrieEntry entry = nextEntry(null);
        while (entry != null)
        {
            TrieEntry current = entry;

            Decision decision = cursor.select(current);
            entry = nextEntry(current);

            switch(decision)
            {
                case EXIT:
                    return current;

                case REMOVE:
                    removeEntry(current);
                    break; // out of switch, stay in while loop

                case REMOVE_AND_EXIT:
                    Map.Entry value = new TrieEntry<>(current.getKey(), current.getValue(), -1);
                    removeEntry(current);
                    return value;

                case CONTINUE: // do nothing.
            }
        }

        return null;
    }

    @Override
    public boolean containsKey(Object k)
    {
        if (k == null)
            return false;

        K key = Tries.cast(k);
        TrieEntry entry = getNearestEntryForKey(key);
        return !entry.isEmpty() && compareKeys(key, entry.key);
    }

    @Override
    public Set> entrySet()
    {
        if (entrySet == null)
            entrySet = new EntrySet();

        return entrySet;
    }

    @Override
    public Set keySet()
    {
        if (keySet == null)
            keySet = new KeySet();
        return keySet;
    }

    @Override
    public Collection values()
    {
        if (values == null)
            values = new Values();
        return values;
    }

    /**
     * {@inheritDoc}
     *
     * @throws ClassCastException if provided key is of an incompatible type
     */
    @Override
    public V remove(Object k)
    {
        if (k == null)
            return null;

        K key = Tries.cast(k);
        TrieEntry current = root.left;
        TrieEntry path = root;
        while (true)
        {
            if (current.bitIndex <= path.bitIndex)
            {
                if (!current.isEmpty() && compareKeys(key, current.key))
                {
                    return removeEntry(current);
                }
                else
                {
                    return null;
                }
            }

            path = current;
            current = !isBitSet(key, current.bitIndex) ? current.left : current.right;
        }
    }

    /**
     * Returns the nearest entry for a given key.  This is useful
     * for finding knowing if a given key exists (and finding the value
     * for it), or for inserting the key.
     *
     * The actual get implementation. This is very similar to
     * selectR but with the exception that it might return the
     * root Entry even if it's empty.
     */
    TrieEntry getNearestEntryForKey(K key)
    {
        TrieEntry current = root.left;
        TrieEntry path = root;

        while(true)
        {
            if (current.bitIndex <= path.bitIndex)
                return current;

            path = current;
            current = !isBitSet(key, current.bitIndex) ? current.left : current.right;
        }
    }

    /**
     * Removes a single entry from the {@link Trie}.
     *
     * If we found a Key (Entry h) then figure out if it's
     * an internal (hard to remove) or external Entry (easy
     * to remove)
     */
    V removeEntry(TrieEntry h)
    {
        if (h != root)
        {
            if (h.isInternalNode())
            {
                removeInternalEntry(h);
            }
            else
            {
                removeExternalEntry(h);
            }
        }

        decrementSize();
        return h.setKeyValue(null, null);
    }

    /**
     * Removes an external entry from the {@link Trie}.
     *
     * If it's an external Entry then just remove it.
     * This is very easy and straight forward.
     */
    private void removeExternalEntry(TrieEntry h)
    {
        if (h == root)
        {
            throw new IllegalArgumentException("Cannot delete root Entry!");
        }
        else if (!h.isExternalNode())
        {
            throw new IllegalArgumentException(h + " is not an external Entry!");
        }

        TrieEntry parent = h.parent;
        TrieEntry child = (h.left == h) ? h.right : h.left;

        if (parent.left == h)
        {
            parent.left = child;
        }
        else
        {
            parent.right = child;
        }

        // either the parent is changing, or the predecessor is changing.
        if (child.bitIndex > parent.bitIndex)
        {
            child.parent = parent;
        }
        else
        {
            child.predecessor = parent;
        }

    }

    /**
     * Removes an internal entry from the {@link Trie}.
     *
     * If it's an internal Entry then "good luck" with understanding
     * this code. The Idea is essentially that Entry p takes Entry h's
     * place in the trie which requires some re-wiring.
     */
    private void removeInternalEntry(TrieEntry h)
    {
        if (h == root)
        {
            throw new IllegalArgumentException("Cannot delete root Entry!");
        }
        else if (!h.isInternalNode())
        {
            throw new IllegalArgumentException(h + " is not an internal Entry!");
        }

        TrieEntry p = h.predecessor;

        // Set P's bitIndex
        p.bitIndex = h.bitIndex;

        // Fix P's parent, predecessor and child Nodes
        {
            TrieEntry parent = p.parent;
            TrieEntry child = (p.left == h) ? p.right : p.left;

            // if it was looping to itself previously,
            // it will now be pointed from it's parent
            // (if we aren't removing it's parent --
            //  in that case, it remains looping to itself).
            // otherwise, it will continue to have the same
            // predecessor.
            if (p.predecessor == p && p.parent != h)
                p.predecessor = p.parent;

            if (parent.left == p)
            {
                parent.left = child;
            }
            else
            {
                parent.right = child;
            }

            if (child.bitIndex > parent.bitIndex)
            {
                child.parent = parent;
            }
        }

        // Fix H's parent and child Nodes
        {
            // If H is a parent of its left and right child
            // then change them to P
            if (h.left.parent == h)
                h.left.parent = p;

            if (h.right.parent == h)
                h.right.parent = p;

            // Change H's parent
            if (h.parent.left == h)
            {
                h.parent.left = p;
            }
            else
            {
                h.parent.right = p;
            }
        }

        // Copy the remaining fields from H to P
        //p.bitIndex = h.bitIndex;
        p.parent = h.parent;
        p.left = h.left;
        p.right = h.right;

        // Make sure that if h was pointing to any uplinks,
        // p now points to them.
        if (isValidUplink(p.left, p))
            p.left.predecessor = p;

        if (isValidUplink(p.right, p))
            p.right.predecessor = p;
    }

    /**
     * Returns the entry lexicographically after the given entry.
     * If the given entry is null, returns the first node.
     */
    TrieEntry nextEntry(TrieEntry node)
    {
        return (node == null) ? firstEntry() : nextEntryImpl(node.predecessor, node, null);
    }

    /**
     * Scans for the next node, starting at the specified point, and using 'previous'
     * as a hint that the last node we returned was 'previous' (so we know not to return
     * it again).  If 'tree' is non-null, this will limit the search to the given tree.
     *
     * The basic premise is that each iteration can follow the following steps:
     *
     * 1) Scan all the way to the left.
     *   a) If we already started from this node last time, proceed to Step 2.
     *   b) If a valid uplink is found, use it.
     *   c) If the result is an empty node (root not set), break the scan.
     *   d) If we already returned the left node, break the scan.
     *
     * 2) Check the right.
     *   a) If we already returned the right node, proceed to Step 3.
     *   b) If it is a valid uplink, use it.
     *   c) Do Step 1 from the right node.
     *
     * 3) Back up through the parents until we encounter find a parent
     *    that we're not the right child of.
     *
     * 4) If there's no right child of that parent, the iteration is finished.
     *    Otherwise continue to Step 5.
     *
     * 5) Check to see if the right child is a valid uplink.
     *    a) If we already returned that child, proceed to Step 6.
     *       Otherwise, use it.
     *
     * 6) If the right child of the parent is the parent itself, we've
     *    already found & returned the end of the Trie, so exit.
     *
     * 7) Do Step 1 on the parent's right child.
     */
    TrieEntry nextEntryImpl(TrieEntry start, TrieEntry previous, TrieEntry tree)
    {
        TrieEntry current = start;

        // Only look at the left if this was a recursive or
        // the first check, otherwise we know we've already looked
        // at the left.
        if (previous == null || start != previous.predecessor)
        {
            while (!current.left.isEmpty())
            {
                // stop traversing if we've already
                // returned the left of this node.
                if (previous == current.left)
                    break;

                if (isValidUplink(current.left, current))
                    return current.left;

                current = current.left;
            }
        }

        // If there's no data at all, exit.
        if (current.isEmpty())
            return null;

        // If we've already returned the left,
        // and the immediate right is null,
        // there's only one entry in the Trie
        // which is stored at the root.
        //
        //  / ("")   <-- root
        //  \_/  \
        //       null <-- 'current'
        //
        if (current.right == null)
            return null;

        // If nothing valid on the left, try the right.
        if (previous != current.right)
        {
            // See if it immediately is valid.
            if (isValidUplink(current.right, current))
                return current.right;

            // Must search on the right's side if it wasn't initially valid.
            return nextEntryImpl(current.right, previous, tree);
        }

        // Neither left nor right are valid, find the first parent
        // whose child did not come from the right & traverse it.
        while (current == current.parent.right)
        {
            // If we're going to traverse to above the subtree, stop.
            if (current == tree)
                return null;

            current = current.parent;
        }

        // If we're on the top of the subtree, we can't go any higher.
        if (current == tree)
            return null;

        // If there's no right, the parent must be root, so we're done.
        if (current.parent.right == null)
            return null;

        // If the parent's right points to itself, we've found one.
        if (previous != current.parent.right && isValidUplink(current.parent.right, current.parent))
            return current.parent.right;

        // If the parent's right is itself, there can't be any more nodes.
        if (current.parent.right == current.parent)
            return null;

        // We need to traverse down the parent's right's path.
        return nextEntryImpl(current.parent.right, previous, tree);
    }

    /**
     * Returns the first entry the {@link Trie} is storing.
     *
     * This is implemented by going always to the left until
     * we encounter a valid uplink. That uplink is the first key.
     */
    TrieEntry firstEntry()
    {
        // if Trie is empty, no first node.
        return isEmpty() ? null : followLeft(root);
    }

    /**
     * Goes left through the tree until it finds a valid node.
     */
    TrieEntry followLeft(TrieEntry node)
    {
        while(true)
        {
            TrieEntry child = node.left;
            // if we hit root and it didn't have a node, go right instead.
            if (child.isEmpty())
                child = node.right;

            if (child.bitIndex <= node.bitIndex)
                return child;

            node = child;
        }
    }

    /**
     * Returns true if 'next' is a valid uplink coming from 'from'.
     */
    static boolean isValidUplink(TrieEntry next, TrieEntry from)
    {
        return next != null && next.bitIndex <= from.bitIndex && !next.isEmpty();
    }

    /**
     * A {@link Reference} allows us to return something through a Method's
     * argument list. An alternative would be to an Array with a length of
     * one (1) but that leads to compiler warnings. Computationally and memory
     * wise there's no difference (except for the need to load the
     * {@link Reference} Class but that happens only once).
     */
    private static class Reference
    {

        private E item;

        public void set(E item)
        {
            this.item = item;
        }

        public E get()
        {
            return item;
        }
    }

    /**
     *  A {@link Trie} is a set of {@link TrieEntry} nodes
     */
    static class TrieEntry extends BasicEntry
    {

        private static final long serialVersionUID = 4596023148184140013L;

        /** The index this entry is comparing. */
        protected int bitIndex;

        /** The parent of this entry. */
        protected TrieEntry parent;

        /** The left child of this entry. */
        protected TrieEntry left;

        /** The right child of this entry. */
        protected TrieEntry right;

        /** The entry who uplinks to this entry. */
        protected TrieEntry predecessor;

        public TrieEntry(K key, V value, int bitIndex)
        {
            super(key, value);

            this.bitIndex = bitIndex;

            this.parent = null;
            this.left = this;
            this.right = null;
            this.predecessor = this;
        }

        /**
         * Whether or not the entry is storing a key.
         * Only the root can potentially be empty, all other
         * nodes must have a key.
         */
        public boolean isEmpty()
        {
            return key == null;
        }

        /**
         * Neither the left nor right child is a loopback
         */
        public boolean isInternalNode()
        {
            return left != this && right != this;
        }

        /**
         * Either the left or right child is a loopback
         */
        public boolean isExternalNode()
        {
            return !isInternalNode();
        }
    }


    /**
     * This is a entry set view of the {@link Trie} as returned
     * by {@link Map#entrySet()}
     */
    private class EntrySet extends AbstractSet>
    {
        @Override
        public Iterator> iterator()
        {
            return new EntryIterator();
        }

        @Override
        public boolean contains(Object o)
        {
            if (!(o instanceof Map.Entry))
                return false;

            TrieEntry candidate = getEntry(((Map.Entry)o).getKey());
            return candidate != null && candidate.equals(o);
        }

        @Override
        public boolean remove(Object o)
        {
            int size = size();
            AbstractPatriciaTrie.this.remove(o);
            return size != size();
        }

        @Override
        public int size()
        {
            return AbstractPatriciaTrie.this.size();
        }

        @Override
        public void clear()
        {
            AbstractPatriciaTrie.this.clear();
        }

        /**
         * An {@link Iterator} that returns {@link Entry} Objects
         */
        private class EntryIterator extends TrieIterator>
        {
            @Override
            public Map.Entry next()
            {
                return nextEntry();
            }
        }
    }

    /**
     * This is a key set view of the {@link Trie} as returned
     * by {@link Map#keySet()}
     */
    private class KeySet extends AbstractSet
    {
        @Override
        public Iterator iterator()
        {
            return new KeyIterator();
        }

        @Override
        public int size()
        {
            return AbstractPatriciaTrie.this.size();
        }

        @Override
        public boolean contains(Object o)
        {
            return containsKey(o);
        }

        @Override
        public boolean remove(Object o)
        {
            int size = size();
            AbstractPatriciaTrie.this.remove(o);
            return size != size();
        }

        @Override
        public void clear()
        {
            AbstractPatriciaTrie.this.clear();
        }

        /**
         * An {@link Iterator} that returns Key Objects
         */
        private class KeyIterator extends TrieIterator
        {
            @Override
            public K next()
            {
                return nextEntry().getKey();
            }
        }
    }

    /**
     * This is a value view of the {@link Trie} as returned
     * by {@link Map#values()}
     */
    private class Values extends AbstractCollection
    {
        @Override
        public Iterator iterator()
        {
            return new ValueIterator();
        }

        @Override
        public int size()
        {
            return AbstractPatriciaTrie.this.size();
        }

        @Override
        public boolean contains(Object o)
        {
            return containsValue(o);
        }

        @Override
        public void clear()
        {
            AbstractPatriciaTrie.this.clear();
        }

        @Override
        public boolean remove(Object o)
        {
            for (Iterator it = iterator(); it.hasNext(); )
            {
                V value = it.next();
                if (Tries.areEqual(value, o))
                {
                    it.remove();
                    return true;
                }
            }
            return false;
        }

        /**
         * An {@link Iterator} that returns Value Objects
         */
        private class ValueIterator extends TrieIterator
        {
            @Override
            public V next()
            {
                return nextEntry().getValue();
            }
        }
    }

    /**
     * An iterator for the entries.
     */
    abstract class TrieIterator implements Iterator
    {
        /**
         * For fast-fail
         */
        protected int expectedModCount = AbstractPatriciaTrie.this.modCount;

        protected TrieEntry next; // the next node to return
        protected TrieEntry current; // the current entry we're on

        /**
         * Starts iteration from the root
         */
        protected TrieIterator()
        {
            next = AbstractPatriciaTrie.this.nextEntry(null);
        }

        /**
         * Starts iteration at the given entry
         */
        protected TrieIterator(TrieEntry firstEntry)
        {
            next = firstEntry;
        }

        /**
         * Returns the next {@link TrieEntry}
         */
        protected TrieEntry nextEntry()
        {
            if (expectedModCount != AbstractPatriciaTrie.this.modCount)
                throw new ConcurrentModificationException();

            TrieEntry e = next;
            if (e == null)
                throw new NoSuchElementException();

            next = findNext(e);
            current = e;
            return e;
        }

        /**
         * @see PatriciaTrie#nextEntry(TrieEntry)
         */
        protected TrieEntry findNext(TrieEntry prior)
        {
            return AbstractPatriciaTrie.this.nextEntry(prior);
        }

        @Override
        public boolean hasNext()
        {
            return next != null;
        }

        @Override
        public void remove()
        {
            if (current == null)
                throw new IllegalStateException();

            if (expectedModCount != AbstractPatriciaTrie.this.modCount)
                throw new ConcurrentModificationException();

            TrieEntry node = current;
            current = null;
            AbstractPatriciaTrie.this.removeEntry(node);

            expectedModCount = AbstractPatriciaTrie.this.modCount;
        }
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy