All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.repair.RepairSession Maven / Gradle / Ivy

/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.repair;

import java.io.IOException;
import java.net.InetAddress;
import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicBoolean;

import com.google.common.collect.Lists;
import com.google.common.util.concurrent.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.cassandra.concurrent.DebuggableThreadPoolExecutor;
import org.apache.cassandra.config.DatabaseDescriptor;
import org.apache.cassandra.dht.Range;
import org.apache.cassandra.dht.Token;
import org.apache.cassandra.gms.*;
import org.apache.cassandra.tracing.Tracing;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.MerkleTrees;
import org.apache.cassandra.utils.Pair;

/**
 * Coordinates the (active) repair of a list of non overlapping token ranges.
 *
 * A given RepairSession repairs a set of replicas for a given set of ranges on a list
 * of column families. For each of the column family to repair, RepairSession
 * creates a {@link RepairJob} that handles the repair of that CF.
 *
 * A given RepairJob has the 2 main phases:
 * 
    *
  1. Validation phase: the job requests merkle trees from each of the replica involves * ({@link org.apache.cassandra.repair.ValidationTask}) and waits until all trees are received (in * validationComplete()). *
  2. *
  3. Synchronization phase: once all trees are received, the job compares each tree with * all the other using a so-called {@link SyncTask}. If there is difference between 2 trees, the * concerned SyncTask will start a streaming of the difference between the 2 endpoint concerned. *
  4. *
* The job is done once all its SyncTasks are done (i.e. have either computed no differences * or the streaming they started is done (syncComplete())). * * A given session will execute the first phase (validation phase) of each of it's job * sequentially. In other words, it will start the first job and only start the next one * once that first job validation phase is complete. This is done so that the replica only * create one merkle tree per range at a time, which is our way to ensure that such creation starts * roughly at the same time on every node (see CASSANDRA-2816). However the synchronization * phases are allowed to run concurrently (with each other and with validation phases). * * A given RepairJob has 2 modes: either sequential or not (RepairParallelism). If sequential, * it will requests merkle tree creation from each replica in sequence (though in that case * we still first send a message to each node to flush and snapshot data so each merkle tree * creation is still done on similar data, even if the actual creation is not * done simulatneously). If not sequential, all merkle tree are requested in parallel. * Similarly, if a job is sequential, it will handle one SyncTask at a time, but will handle * all of them in parallel otherwise. */ public class RepairSession extends AbstractFuture implements IEndpointStateChangeSubscriber, IFailureDetectionEventListener { private static Logger logger = LoggerFactory.getLogger(RepairSession.class); public final UUID parentRepairSession; /** Repair session ID */ private final UUID id; public final String keyspace; private final String[] cfnames; public final RepairParallelism parallelismDegree; public final boolean pullRepair; /** Range to repair */ public final Collection> ranges; public final Set endpoints; public final long repairedAt; private final AtomicBoolean isFailed = new AtomicBoolean(false); // Each validation task waits response from replica in validating ConcurrentMap (keyed by CF name and endpoint address) private final ConcurrentMap, ValidationTask> validating = new ConcurrentHashMap<>(); // Remote syncing jobs wait response in syncingTasks map private final ConcurrentMap, RemoteSyncTask> syncingTasks = new ConcurrentHashMap<>(); // Tasks(snapshot, validate request, differencing, ...) are run on taskExecutor public final ListeningExecutorService taskExecutor = MoreExecutors.listeningDecorator(DebuggableThreadPoolExecutor.createCachedThreadpoolWithMaxSize("RepairJobTask")); private volatile boolean terminated = false; /** * Create new repair session. * * @param parentRepairSession the parent sessions id * @param id this sessions id * @param ranges ranges to repair * @param keyspace name of keyspace * @param parallelismDegree specifies the degree of parallelism when calculating the merkle trees * @param endpoints the data centers that should be part of the repair; null for all DCs * @param repairedAt when the repair occurred (millis) * @param pullRepair true if the repair should be one way (from remote host to this host and only applicable between two hosts--see RepairOption) * @param cfnames names of columnfamilies */ public RepairSession(UUID parentRepairSession, UUID id, Collection> ranges, String keyspace, RepairParallelism parallelismDegree, Set endpoints, long repairedAt, boolean pullRepair, String... cfnames) { assert cfnames.length > 0 : "Repairing no column families seems pointless, doesn't it"; this.parentRepairSession = parentRepairSession; this.id = id; this.parallelismDegree = parallelismDegree; this.keyspace = keyspace; this.cfnames = cfnames; this.ranges = ranges; this.endpoints = endpoints; this.repairedAt = repairedAt; this.pullRepair = pullRepair; } public UUID getId() { return id; } public Collection> getRanges() { return ranges; } public void waitForValidation(Pair key, ValidationTask task) { validating.put(key, task); } public void waitForSync(Pair key, RemoteSyncTask task) { syncingTasks.put(key, task); } /** * Receive merkle tree response or failed response from {@code endpoint} for current repair job. * * @param desc repair job description * @param endpoint endpoint that sent merkle tree * @param trees calculated merkle trees, or null if validation failed */ public void validationComplete(RepairJobDesc desc, InetAddress endpoint, MerkleTrees trees) { ValidationTask task = validating.remove(Pair.create(desc, endpoint)); if (task == null) { assert terminated; return; } String message = String.format("Received merkle tree for %s from %s", desc.columnFamily, endpoint); logger.info("[repair #{}] {}", getId(), message); Tracing.traceRepair(message); task.treesReceived(trees); } /** * Notify this session that sync completed/failed with given {@code NodePair}. * * @param desc synced repair job * @param nodes nodes that completed sync * @param success true if sync succeeded */ public void syncComplete(RepairJobDesc desc, NodePair nodes, boolean success) { RemoteSyncTask task = syncingTasks.get(Pair.create(desc, nodes)); if (task == null) { assert terminated; return; } logger.debug("[repair #{}] Repair completed between {} and {} on {}", getId(), nodes.endpoint1, nodes.endpoint2, desc.columnFamily); task.syncComplete(success); } private String repairedNodes() { StringBuilder sb = new StringBuilder(); sb.append(FBUtilities.getBroadcastAddress()); for (InetAddress ep : endpoints) sb.append(", ").append(ep); return sb.toString(); } /** * Start RepairJob on given ColumnFamilies. * * This first validates if all replica are available, and if they are, * creates RepairJobs and submit to run on given executor. * * @param executor Executor to run validation */ public void start(ListeningExecutorService executor) { String message; if (terminated) return; logger.info("[repair #{}] new session: will sync {} on range {} for {}.{}", getId(), repairedNodes(), ranges, keyspace, Arrays.toString(cfnames)); Tracing.traceRepair("Syncing range {}", ranges); SystemDistributedKeyspace.startRepairs(getId(), parentRepairSession, keyspace, cfnames, ranges, endpoints); if (endpoints.isEmpty()) { logger.info("[repair #{}] {}", getId(), message = String.format("No neighbors to repair with on range %s: session completed", ranges)); Tracing.traceRepair(message); set(new RepairSessionResult(id, keyspace, ranges, Lists.newArrayList())); SystemDistributedKeyspace.failRepairs(getId(), keyspace, cfnames, new RuntimeException(message)); return; } // Checking all nodes are live for (InetAddress endpoint : endpoints) { if (!FailureDetector.instance.isAlive(endpoint)) { message = String.format("Cannot proceed on repair because a neighbor (%s) is dead: session failed", endpoint); logger.error("[repair #{}] {}", getId(), message); Exception e = new IOException(message); setException(e); SystemDistributedKeyspace.failRepairs(getId(), keyspace, cfnames, e); return; } } // Create and submit RepairJob for each ColumnFamily List> jobs = new ArrayList<>(cfnames.length); for (String cfname : cfnames) { RepairJob job = new RepairJob(this, cfname); executor.execute(job); jobs.add(job); } // When all RepairJobs are done without error, cleanup and set the final result Futures.addCallback(Futures.allAsList(jobs), new FutureCallback>() { public void onSuccess(List results) { // this repair session is completed logger.info("[repair #{}] {}", getId(), "Session completed successfully"); Tracing.traceRepair("Completed sync of range {}", ranges); set(new RepairSessionResult(id, keyspace, ranges, results)); taskExecutor.shutdown(); // mark this session as terminated terminate(); } public void onFailure(Throwable t) { logger.error(String.format("[repair #%s] Session completed with the following error", getId()), t); Tracing.traceRepair("Session completed with the following error: {}", t); forceShutdown(t); } }); } public void terminate() { terminated = true; validating.clear(); syncingTasks.clear(); } /** * clear all RepairJobs and terminate this session. * * @param reason Cause of error for shutdown */ public void forceShutdown(Throwable reason) { setException(reason); taskExecutor.shutdownNow(); terminate(); } public void onJoin(InetAddress endpoint, EndpointState epState) {} public void beforeChange(InetAddress endpoint, EndpointState currentState, ApplicationState newStateKey, VersionedValue newValue) {} public void onChange(InetAddress endpoint, ApplicationState state, VersionedValue value) {} public void onAlive(InetAddress endpoint, EndpointState state) {} public void onDead(InetAddress endpoint, EndpointState state) {} public void onRemove(InetAddress endpoint) { convict(endpoint, Double.MAX_VALUE); } public void onRestart(InetAddress endpoint, EndpointState epState) { convict(endpoint, Double.MAX_VALUE); } public void convict(InetAddress endpoint, double phi) { if (!endpoints.contains(endpoint)) return; // We want a higher confidence in the failure detection than usual because failing a repair wrongly has a high cost. if (phi < 2 * DatabaseDescriptor.getPhiConvictThreshold()) return; // Though unlikely, it is possible to arrive here multiple time and we // want to avoid print an error message twice if (!isFailed.compareAndSet(false, true)) return; Exception exception = new IOException(String.format("Endpoint %s died", endpoint)); logger.error(String.format("[repair #%s] session completed with the following error", getId()), exception); // If a node failed, we stop everything (though there could still be some activity in the background) forceShutdown(exception); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy