org.elasticsearch.search.aggregations.pipeline.movavg.MovAvgPipelineAggregationBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch Show documentation
Show all versions of elasticsearch Show documentation
Elasticsearch subproject :server
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.pipeline.movavg;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.ParsingException;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.xcontent.ParseFieldRegistry;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;
import org.elasticsearch.index.query.QueryParseContext;
import org.elasticsearch.search.DocValueFormat;
import org.elasticsearch.search.aggregations.AggregatorFactory;
import org.elasticsearch.search.aggregations.PipelineAggregationBuilder;
import org.elasticsearch.search.aggregations.bucket.histogram.DateHistogramAggregatorFactory;
import org.elasticsearch.search.aggregations.bucket.histogram.HistogramAggregatorFactory;
import org.elasticsearch.search.aggregations.pipeline.AbstractPipelineAggregationBuilder;
import org.elasticsearch.search.aggregations.pipeline.BucketHelpers.GapPolicy;
import org.elasticsearch.search.aggregations.pipeline.PipelineAggregator;
import org.elasticsearch.search.aggregations.pipeline.movavg.models.MovAvgModel;
import org.elasticsearch.search.aggregations.pipeline.movavg.models.MovAvgModelBuilder;
import org.elasticsearch.search.aggregations.pipeline.movavg.models.SimpleModel;
import java.io.IOException;
import java.text.ParseException;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import static org.elasticsearch.search.aggregations.pipeline.PipelineAggregator.Parser.BUCKETS_PATH;
import static org.elasticsearch.search.aggregations.pipeline.PipelineAggregator.Parser.FORMAT;
import static org.elasticsearch.search.aggregations.pipeline.PipelineAggregator.Parser.GAP_POLICY;
public class MovAvgPipelineAggregationBuilder extends AbstractPipelineAggregationBuilder {
public static final String NAME = "moving_avg";
public static final ParseField MODEL = new ParseField("model");
private static final ParseField WINDOW = new ParseField("window");
public static final ParseField SETTINGS = new ParseField("settings");
private static final ParseField PREDICT = new ParseField("predict");
private static final ParseField MINIMIZE = new ParseField("minimize");
private String format;
private GapPolicy gapPolicy = GapPolicy.SKIP;
private int window = 5;
private MovAvgModel model = new SimpleModel();
private int predict = 0;
private Boolean minimize;
public MovAvgPipelineAggregationBuilder(String name, String bucketsPath) {
super(name, NAME, new String[] { bucketsPath });
}
/**
* Read from a stream.
*/
public MovAvgPipelineAggregationBuilder(StreamInput in) throws IOException {
super(in, NAME);
format = in.readOptionalString();
gapPolicy = GapPolicy.readFrom(in);
window = in.readVInt();
model = in.readNamedWriteable(MovAvgModel.class);
predict = in.readVInt();
minimize = in.readOptionalBoolean();
}
@Override
protected void doWriteTo(StreamOutput out) throws IOException {
out.writeOptionalString(format);
gapPolicy.writeTo(out);
out.writeVInt(window);
out.writeNamedWriteable(model);
out.writeVInt(predict);
out.writeOptionalBoolean(minimize);
}
/**
* Sets the format to use on the output of this aggregation.
*/
public MovAvgPipelineAggregationBuilder format(String format) {
if (format == null) {
throw new IllegalArgumentException("[format] must not be null: [" + name + "]");
}
this.format = format;
return this;
}
/**
* Gets the format to use on the output of this aggregation.
*/
public String format() {
return format;
}
/**
* Sets the GapPolicy to use on the output of this aggregation.
*/
public MovAvgPipelineAggregationBuilder gapPolicy(GapPolicy gapPolicy) {
if (gapPolicy == null) {
throw new IllegalArgumentException("[gapPolicy] must not be null: [" + name + "]");
}
this.gapPolicy = gapPolicy;
return this;
}
/**
* Gets the GapPolicy to use on the output of this aggregation.
*/
public GapPolicy gapPolicy() {
return gapPolicy;
}
protected DocValueFormat formatter() {
if (format != null) {
return new DocValueFormat.Decimal(format);
} else {
return DocValueFormat.RAW;
}
}
/**
* Sets the window size for the moving average. This window will "slide"
* across the series, and the values inside that window will be used to
* calculate the moving avg value
*
* @param window
* Size of window
*/
public MovAvgPipelineAggregationBuilder window(int window) {
if (window <= 0) {
throw new IllegalArgumentException("[window] must be a positive integer: [" + name + "]");
}
this.window = window;
return this;
}
/**
* Gets the window size for the moving average. This window will "slide"
* across the series, and the values inside that window will be used to
* calculate the moving avg value
*/
public int window() {
return window;
}
/**
* Sets a MovAvgModel for the Moving Average. The model is used to
* define what type of moving average you want to use on the series
*
* @param model
* A MovAvgModel which has been prepopulated with settings
*/
public MovAvgPipelineAggregationBuilder modelBuilder(MovAvgModelBuilder model) {
if (model == null) {
throw new IllegalArgumentException("[model] must not be null: [" + name + "]");
}
this.model = model.build();
return this;
}
/**
* Sets a MovAvgModel for the Moving Average. The model is used to
* define what type of moving average you want to use on the series
*
* @param model
* A MovAvgModel which has been prepopulated with settings
*/
public MovAvgPipelineAggregationBuilder model(MovAvgModel model) {
if (model == null) {
throw new IllegalArgumentException("[model] must not be null: [" + name + "]");
}
this.model = model;
return this;
}
/**
* Gets a MovAvgModel for the Moving Average. The model is used to
* define what type of moving average you want to use on the series
*/
public MovAvgModel model() {
return model;
}
/**
* Sets the number of predictions that should be returned. Each
* prediction will be spaced at the intervals specified in the
* histogram. E.g "predict: 2" will return two new buckets at the end of
* the histogram with the predicted values.
*
* @param predict
* Number of predictions to make
*/
public MovAvgPipelineAggregationBuilder predict(int predict) {
if (predict <= 0) {
throw new IllegalArgumentException("predict must be greater than 0. Found [" + predict + "] in [" + name + "]");
}
this.predict = predict;
return this;
}
/**
* Gets the number of predictions that should be returned. Each
* prediction will be spaced at the intervals specified in the
* histogram. E.g "predict: 2" will return two new buckets at the end of
* the histogram with the predicted values.
*/
public int predict() {
return predict;
}
/**
* Sets whether the model should be fit to the data using a cost
* minimizing algorithm.
*
* @param minimize
* If the model should be fit to the underlying data
*/
public MovAvgPipelineAggregationBuilder minimize(boolean minimize) {
this.minimize = minimize;
return this;
}
/**
* Gets whether the model should be fit to the data using a cost
* minimizing algorithm.
*/
public Boolean minimize() {
return minimize;
}
@Override
protected PipelineAggregator createInternal(Map metaData) throws IOException {
// If the user doesn't set a preference for cost minimization, ask
// what the model prefers
boolean minimize = this.minimize == null ? model.minimizeByDefault() : this.minimize;
return new MovAvgPipelineAggregator(name, bucketsPaths, formatter(), gapPolicy, window, predict, model, minimize, metaData);
}
@Override
public void doValidate(AggregatorFactory> parent, AggregatorFactory>[] aggFactories,
List pipelineAggregatoractories) {
if (minimize != null && minimize && !model.canBeMinimized()) {
// If the user asks to minimize, but this model doesn't support
// it, throw exception
throw new IllegalStateException("The [" + model + "] model cannot be minimized for aggregation [" + name + "]");
}
if (bucketsPaths.length != 1) {
throw new IllegalStateException(PipelineAggregator.Parser.BUCKETS_PATH.getPreferredName()
+ " must contain a single entry for aggregation [" + name + "]");
}
if (parent instanceof HistogramAggregatorFactory) {
HistogramAggregatorFactory histoParent = (HistogramAggregatorFactory) parent;
if (histoParent.minDocCount() != 0) {
throw new IllegalStateException("parent histogram of moving average aggregation [" + name
+ "] must have min_doc_count of 0");
}
} else if (parent instanceof DateHistogramAggregatorFactory) {
DateHistogramAggregatorFactory histoParent = (DateHistogramAggregatorFactory) parent;
if (histoParent.minDocCount() != 0) {
throw new IllegalStateException("parent histogram of moving average aggregation [" + name
+ "] must have min_doc_count of 0");
}
} else {
throw new IllegalStateException("moving average aggregation [" + name
+ "] must have a histogram or date_histogram as parent");
}
}
@Override
protected XContentBuilder internalXContent(XContentBuilder builder, Params params) throws IOException {
if (format != null) {
builder.field(FORMAT.getPreferredName(), format);
}
builder.field(GAP_POLICY.getPreferredName(), gapPolicy.getName());
model.toXContent(builder, params);
builder.field(WINDOW.getPreferredName(), window);
if (predict > 0) {
builder.field(PREDICT.getPreferredName(), predict);
}
if (minimize != null) {
builder.field(MINIMIZE.getPreferredName(), minimize);
}
return builder;
}
public static MovAvgPipelineAggregationBuilder parse(
ParseFieldRegistry movingAverageMdelParserRegistry,
String pipelineAggregatorName, QueryParseContext context) throws IOException {
XContentParser parser = context.parser();
XContentParser.Token token;
String currentFieldName = null;
String[] bucketsPaths = null;
String format = null;
GapPolicy gapPolicy = null;
Integer window = null;
Map settings = null;
String model = null;
Integer predict = null;
Boolean minimize = null;
while ((token = parser.nextToken()) != XContentParser.Token.END_OBJECT) {
if (token == XContentParser.Token.FIELD_NAME) {
currentFieldName = parser.currentName();
} else if (token == XContentParser.Token.VALUE_NUMBER) {
if (WINDOW.match(currentFieldName)) {
window = parser.intValue();
if (window <= 0) {
throw new ParsingException(parser.getTokenLocation(), "[" + currentFieldName + "] value must be a positive, "
+ "non-zero integer. Value supplied was [" + predict + "] in [" + pipelineAggregatorName + "].");
}
} else if (PREDICT.match(currentFieldName)) {
predict = parser.intValue();
if (predict <= 0) {
throw new ParsingException(parser.getTokenLocation(), "[" + currentFieldName + "] value must be a positive integer."
+ " Value supplied was [" + predict + "] in [" + pipelineAggregatorName + "].");
}
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: [" + currentFieldName + "].");
}
} else if (token == XContentParser.Token.VALUE_STRING) {
if (FORMAT.match(currentFieldName)) {
format = parser.text();
} else if (BUCKETS_PATH.match(currentFieldName)) {
bucketsPaths = new String[] { parser.text() };
} else if (GAP_POLICY.match(currentFieldName)) {
gapPolicy = GapPolicy.parse(context, parser.text(), parser.getTokenLocation());
} else if (MODEL.match(currentFieldName)) {
model = parser.text();
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: [" + currentFieldName + "].");
}
} else if (token == XContentParser.Token.START_ARRAY) {
if (BUCKETS_PATH.match(currentFieldName)) {
List paths = new ArrayList<>();
while ((token = parser.nextToken()) != XContentParser.Token.END_ARRAY) {
String path = parser.text();
paths.add(path);
}
bucketsPaths = paths.toArray(new String[paths.size()]);
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: [" + currentFieldName + "].");
}
} else if (token == XContentParser.Token.START_OBJECT) {
if (SETTINGS.match(currentFieldName)) {
settings = parser.map();
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: [" + currentFieldName + "].");
}
} else if (token == XContentParser.Token.VALUE_BOOLEAN) {
if (MINIMIZE.match(currentFieldName)) {
minimize = parser.booleanValue();
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unknown key for a " + token + " in [" + pipelineAggregatorName + "]: [" + currentFieldName + "].");
}
} else {
throw new ParsingException(parser.getTokenLocation(),
"Unexpected token " + token + " in [" + pipelineAggregatorName + "].");
}
}
if (bucketsPaths == null) {
throw new ParsingException(parser.getTokenLocation(), "Missing required field [" + BUCKETS_PATH.getPreferredName()
+ "] for movingAvg aggregation [" + pipelineAggregatorName + "]");
}
MovAvgPipelineAggregationBuilder factory =
new MovAvgPipelineAggregationBuilder(pipelineAggregatorName, bucketsPaths[0]);
if (format != null) {
factory.format(format);
}
if (gapPolicy != null) {
factory.gapPolicy(gapPolicy);
}
if (window != null) {
factory.window(window);
}
if (predict != null) {
factory.predict(predict);
}
if (model != null) {
MovAvgModel.AbstractModelParser modelParser = movingAverageMdelParserRegistry.lookup(model, parser.getTokenLocation());
MovAvgModel movAvgModel;
try {
movAvgModel = modelParser.parse(settings, pipelineAggregatorName, factory.window());
} catch (ParseException exception) {
throw new ParsingException(parser.getTokenLocation(), "Could not parse settings for model [" + model + "].", exception);
}
factory.model(movAvgModel);
}
if (minimize != null) {
factory.minimize(minimize);
}
return factory;
}
@Override
protected int doHashCode() {
return Objects.hash(format, gapPolicy, window, model, predict, minimize);
}
@Override
protected boolean doEquals(Object obj) {
MovAvgPipelineAggregationBuilder other = (MovAvgPipelineAggregationBuilder) obj;
return Objects.equals(format, other.format)
&& Objects.equals(gapPolicy, other.gapPolicy)
&& Objects.equals(window, other.window)
&& Objects.equals(model, other.model)
&& Objects.equals(predict, other.predict)
&& Objects.equals(minimize, other.minimize);
}
@Override
public String getWriteableName() {
return NAME;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy