org.elasticsearch.search.aggregations.pipeline.movavg.models.MovAvgModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch Show documentation
Show all versions of elasticsearch Show documentation
Elasticsearch subproject :server
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.pipeline.movavg.models;
import org.elasticsearch.common.Nullable;
import org.elasticsearch.common.io.stream.NamedWriteable;
import org.elasticsearch.common.io.stream.StreamOutput;
import org.elasticsearch.common.xcontent.ToXContentFragment;
import java.io.IOException;
import java.text.ParseException;
import java.util.Arrays;
import java.util.Collection;
import java.util.Map;
public abstract class MovAvgModel implements NamedWriteable, ToXContentFragment {
/**
* Should this model be fit to the data via a cost minimizing algorithm by default?
*/
public boolean minimizeByDefault() {
return false;
}
/**
* Returns if the model can be cost minimized. Not all models have parameters
* which can be tuned / optimized.
*/
public abstract boolean canBeMinimized();
/**
* Generates a "neighboring" model, where one of the tunable parameters has been
* randomly mutated within the allowed range. Used for minimization
*/
public abstract MovAvgModel neighboringModel();
/**
* Checks to see this model can produce a new value, without actually running the algo.
* This can be used for models that have certain preconditions that need to be met in order
* to short-circuit execution
*
* @param valuesAvailable Number of values in the current window of values
* @return Returns `true` if calling next() will produce a value, `false` otherwise
*/
public boolean hasValue(int valuesAvailable) {
// Default implementation can always provide a next() value
return valuesAvailable > 0;
}
/**
* Returns the next value in the series, according to the underlying smoothing model
*
* @param values Collection of numerics to movingAvg, usually windowed
* @param Type of numeric
* @return Returns a double, since most smoothing methods operate on floating points
*/
public abstract double next(Collection values);
/**
* Predicts the next `n` values in the series.
*
* @param values Collection of numerics to movingAvg, usually windowed
* @param numPredictions Number of newly generated predictions to return
* @param Type of numeric
* @return Returns an array of doubles, since most smoothing methods operate on floating points
*/
public double[] predict(Collection values, int numPredictions) {
assert(numPredictions >= 1);
// If there are no values, we can't do anything. Return an array of NaNs.
if (values.isEmpty()) {
return emptyPredictions(numPredictions);
}
return doPredict(values, numPredictions);
}
/**
* Calls to the model-specific implementation which actually generates the predictions
*
* @param values Collection of numerics to movingAvg, usually windowed
* @param numPredictions Number of newly generated predictions to return
* @param Type of numeric
* @return Returns an array of doubles, since most smoothing methods operate on floating points
*/
protected abstract double[] doPredict(Collection values, int numPredictions);
/**
* Returns an empty set of predictions, filled with NaNs
* @param numPredictions Number of empty predictions to generate
*/
protected double[] emptyPredictions(int numPredictions) {
double[] predictions = new double[numPredictions];
Arrays.fill(predictions, Double.NaN);
return predictions;
}
/**
* Write the model to the output stream
*
* @param out Output stream
*/
@Override
public abstract void writeTo(StreamOutput out) throws IOException;
/**
* Clone the model, returning an exact copy
*/
@Override
public abstract MovAvgModel clone();
@Override
public abstract int hashCode();
@Override
public abstract boolean equals(Object obj);
/**
* Abstract class which also provides some concrete parsing functionality.
*/
public abstract static class AbstractModelParser {
/**
* Parse a settings hash that is specific to this model
*
* @param settings Map of settings, extracted from the request
* @param pipelineName Name of the parent pipeline agg
* @param windowSize Size of the window for this moving avg
* @return A fully built moving average model
*/
public abstract MovAvgModel parse(@Nullable Map settings, String pipelineName,
int windowSize) throws ParseException;
/**
* Extracts a 0-1 inclusive double from the settings map, otherwise throws an exception
*
* @param settings Map of settings provided to this model
* @param name Name of parameter we are attempting to extract
* @param defaultValue Default value to be used if value does not exist in map
* @return Double value extracted from settings map
*/
protected double parseDoubleParam(@Nullable Map settings, String name, double defaultValue) throws ParseException {
if (settings == null) {
return defaultValue;
}
Object value = settings.get(name);
if (value == null) {
return defaultValue;
} else if (value instanceof Number) {
double v = ((Number) value).doubleValue();
if (v >= 0 && v <= 1) {
settings.remove(name);
return v;
}
throw new ParseException("Parameter [" + name + "] must be between 0-1 inclusive. Provided"
+ "value was [" + v + "]", 0);
}
throw new ParseException("Parameter [" + name + "] must be a double, type `"
+ value.getClass().getSimpleName() + "` provided instead", 0);
}
/**
* Extracts an integer from the settings map, otherwise throws an exception
*
* @param settings Map of settings provided to this model
* @param name Name of parameter we are attempting to extract
* @param defaultValue Default value to be used if value does not exist in map
* @return Integer value extracted from settings map
*/
protected int parseIntegerParam(@Nullable Map settings, String name, int defaultValue) throws ParseException {
if (settings == null) {
return defaultValue;
}
Object value = settings.get(name);
if (value == null) {
return defaultValue;
} else if (value instanceof Number) {
settings.remove(name);
return ((Number) value).intValue();
}
throw new ParseException("Parameter [" + name + "] must be an integer, type `"
+ value.getClass().getSimpleName() + "` provided instead", 0);
}
/**
* Extracts a boolean from the settings map, otherwise throws an exception
*
* @param settings Map of settings provided to this model
* @param name Name of parameter we are attempting to extract
* @param defaultValue Default value to be used if value does not exist in map
* @return Boolean value extracted from settings map
*/
protected boolean parseBoolParam(@Nullable Map settings, String name, boolean defaultValue) throws ParseException {
if (settings == null) {
return defaultValue;
}
Object value = settings.get(name);
if (value == null) {
return defaultValue;
} else if (value instanceof Boolean) {
settings.remove(name);
return (Boolean)value;
}
throw new ParseException("Parameter [" + name + "] must be a boolean, type `"
+ value.getClass().getSimpleName() + "` provided instead", 0);
}
protected void checkUnrecognizedParams(@Nullable Map settings) throws ParseException {
if (settings != null && settings.size() > 0) {
throw new ParseException("Unrecognized parameter(s): [" + settings.keySet() + "]", 0);
}
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy