org.elasticsearch.search.aggregations.bucket.significant.heuristics.ChiSquare Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elasticsearch Show documentation
Show all versions of elasticsearch Show documentation
Elasticsearch subproject :server
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.search.aggregations.bucket.significant.heuristics;
import org.elasticsearch.common.io.stream.StreamInput;
import org.elasticsearch.common.xcontent.XContentBuilder;
import java.io.IOException;
public class ChiSquare extends NXYSignificanceHeuristic {
public static final String NAME = "chi_square";
public ChiSquare(boolean includeNegatives, boolean backgroundIsSuperset) {
super(includeNegatives, backgroundIsSuperset);
}
/**
* Read from a stream.
*/
public ChiSquare(StreamInput in) throws IOException {
super(in);
}
@Override
public boolean equals(Object other) {
if (!(other instanceof ChiSquare)) {
return false;
}
return super.equals(other);
}
@Override
public int hashCode() {
int result = NAME.hashCode();
result = 31 * result + super.hashCode();
return result;
}
/**
* Calculates Chi^2
* see "Information Retrieval", Manning et al., Eq. 13.19
*/
@Override
public double getScore(long subsetFreq, long subsetSize, long supersetFreq, long supersetSize) {
Frequencies frequencies = computeNxys(subsetFreq, subsetSize, supersetFreq, supersetSize, "ChiSquare");
// here we check if the term appears more often in subset than in background without subset.
if (!includeNegatives && frequencies.N11 / frequencies.N_1 < frequencies.N10 / frequencies.N_0) {
return Double.NEGATIVE_INFINITY;
}
return (frequencies.N * Math.pow((frequencies.N11 * frequencies.N00 - frequencies.N01 * frequencies.N10), 2.0) /
((frequencies.N_1) * (frequencies.N1_) * (frequencies.N0_) * (frequencies.N_0)));
}
@Override
public String getWriteableName() {
return NAME;
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject(NAME);
super.build(builder);
builder.endObject();
return builder;
}
public static final SignificanceHeuristicParser PARSER = new NXYParser() {
@Override
protected SignificanceHeuristic newHeuristic(boolean includeNegatives, boolean backgroundIsSuperset) {
return new ChiSquare(includeNegatives, backgroundIsSuperset);
}
};
public static class ChiSquareBuilder extends NXYSignificanceHeuristic.NXYBuilder {
public ChiSquareBuilder(boolean includeNegatives, boolean backgroundIsSuperset) {
super(includeNegatives, backgroundIsSuperset);
}
@Override
public XContentBuilder toXContent(XContentBuilder builder, Params params) throws IOException {
builder.startObject(NAME);
super.build(builder);
builder.endObject();
return builder;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy