All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.cassandra.db.RangeTombstoneList Maven / Gradle / Ivy

Go to download

The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.

There is a newer version: 2.1.07
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.cassandra.db;

import java.io.DataInput;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.security.MessageDigest;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Iterator;

import com.google.common.collect.AbstractIterator;
import com.google.common.collect.Iterators;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import org.apache.cassandra.cache.IMeasurableMemory;
import org.apache.cassandra.db.composites.CType;
import org.apache.cassandra.db.composites.CellName;
import org.apache.cassandra.db.composites.Composite;
import org.apache.cassandra.io.IVersionedSerializer;
import org.apache.cassandra.io.util.DataOutputPlus;
import org.apache.cassandra.net.MessagingService;
import org.apache.cassandra.utils.ObjectSizes;
import org.apache.cassandra.utils.memory.AbstractAllocator;
import org.apache.cassandra.utils.memory.HeapPool;

/**
 * Data structure holding the range tombstones of a ColumnFamily.
 * 

* This is essentially a sorted list of non-overlapping (tombstone) ranges. *

* A range tombstone has 4 elements: the start and end of the range covered, * and the deletion infos (markedAt timestamp and local deletion time). The * markedAt timestamp is what define the priority of 2 overlapping tombstones. * That is, given 2 tombstones [0, 10]@t1 and [5, 15]@t2, then if t2 > t1 (and * are the tombstones markedAt values), the 2nd tombstone take precedence over * the first one on [5, 10]. If such tombstones are added to a RangeTombstoneList, * the range tombstone list will store them as [[0, 5]@t1, [5, 15]@t2]. *

* The only use of the local deletion time is to know when a given tombstone can * be purged, which will be done by the purge() method. */ public class RangeTombstoneList implements Iterable, IMeasurableMemory { private static final Logger logger = LoggerFactory.getLogger(RangeTombstoneList.class); private static long EMPTY_SIZE = ObjectSizes.measure(new RangeTombstoneList(null, 0)); private final Comparator comparator; // Note: we don't want to use a List for the markedAts and delTimes to avoid boxing. We could // use a List for starts and ends, but having arrays everywhere is almost simpler. private Composite[] starts; private Composite[] ends; private long[] markedAts; private int[] delTimes; private long boundaryHeapSize; private int size; private RangeTombstoneList(Comparator comparator, Composite[] starts, Composite[] ends, long[] markedAts, int[] delTimes, long boundaryHeapSize, int size) { assert starts.length == ends.length && starts.length == markedAts.length && starts.length == delTimes.length; this.comparator = comparator; this.starts = starts; this.ends = ends; this.markedAts = markedAts; this.delTimes = delTimes; this.size = size; this.boundaryHeapSize = boundaryHeapSize; } public RangeTombstoneList(Comparator comparator, int capacity) { this(comparator, new Composite[capacity], new Composite[capacity], new long[capacity], new int[capacity], 0, 0); } public boolean isEmpty() { return size == 0; } public int size() { return size; } public Comparator comparator() { return comparator; } public RangeTombstoneList copy() { return new RangeTombstoneList(comparator, Arrays.copyOf(starts, size), Arrays.copyOf(ends, size), Arrays.copyOf(markedAts, size), Arrays.copyOf(delTimes, size), boundaryHeapSize, size); } public RangeTombstoneList copy(AbstractAllocator allocator) { RangeTombstoneList copy = new RangeTombstoneList(comparator, new Composite[size], new Composite[size], Arrays.copyOf(markedAts, size), Arrays.copyOf(delTimes, size), boundaryHeapSize, size); for (int i = 0; i < size; i++) { assert !(starts[i] instanceof AbstractNativeCell || ends[i] instanceof AbstractNativeCell); //this should never happen copy.starts[i] = starts[i].copy(null, allocator); copy.ends[i] = ends[i].copy(null, allocator); } return copy; } public void add(RangeTombstone tombstone) { add(tombstone.min, tombstone.max, tombstone.data.markedForDeleteAt, tombstone.data.localDeletionTime); } /** * Adds a new range tombstone. * * This method will be faster if the new tombstone sort after all the currently existing ones (this is a common use case), * but it doesn't assume it. */ public void add(Composite start, Composite end, long markedAt, int delTime) { if (isEmpty()) { addInternal(0, start, end, markedAt, delTime); return; } int c = comparator.compare(ends[size-1], start); // Fast path if we add in sorted order if (c <= 0) { addInternal(size, start, end, markedAt, delTime); } else { // Note: insertFrom expect i to be the insertion point in term of interval ends int pos = Arrays.binarySearch(ends, 0, size, start, comparator); insertFrom((pos >= 0 ? pos : -pos-1), start, end, markedAt, delTime); } boundaryHeapSize += start.unsharedHeapSize() + end.unsharedHeapSize(); } /** * Adds all the range tombstones of {@code tombstones} to this RangeTombstoneList. */ public void addAll(RangeTombstoneList tombstones) { if (tombstones.isEmpty()) return; if (isEmpty()) { copyArrays(tombstones, this); return; } /* * We basically have 2 techniques we can use here: either we repeatedly call add() on tombstones values, * or we do a merge of both (sorted) lists. If this lists is bigger enough than the one we add, then * calling add() will be faster, otherwise it's merging that will be faster. * * Let's note that during memtables updates, it might not be uncommon that a new update has only a few range * tombstones, while the CF we're adding it to (the one in the memtable) has many. In that case, using add() is * likely going to be faster. * * In other cases however, like when diffing responses from multiple nodes, the tombstone lists we "merge" will * be likely sized, so using add() might be a bit inefficient. * * Roughly speaking (this ignore the fact that updating an element is not exactly constant but that's not a big * deal), if n is the size of this list and m is tombstones size, merging is O(n+m) while using add() is O(m*log(n)). * * But let's not crank up a logarithm computation for that. Long story short, merging will be a bad choice only * if this list size is lot bigger that the other one, so let's keep it simple. */ if (size > 10 * tombstones.size) { for (int i = 0; i < tombstones.size; i++) add(tombstones.starts[i], tombstones.ends[i], tombstones.markedAts[i], tombstones.delTimes[i]); } else { int i = 0; int j = 0; while (i < size && j < tombstones.size) { if (comparator.compare(tombstones.starts[j], ends[i]) <= 0) { insertFrom(i, tombstones.starts[j], tombstones.ends[j], tombstones.markedAts[j], tombstones.delTimes[j]); j++; } else { i++; } } // Addds the remaining ones from tombstones if any (note that addInternal will increment size if relevant). for (; j < tombstones.size; j++) addInternal(size, tombstones.starts[j], tombstones.ends[j], tombstones.markedAts[j], tombstones.delTimes[j]); } } /** * Returns whether the given name/timestamp pair is deleted by one of the tombstone * of this RangeTombstoneList. */ public boolean isDeleted(Cell cell) { int idx = searchInternal(cell.name(), 0); // No matter what the counter cell's timestamp is, a tombstone always takes precedence. See CASSANDRA-7346. return idx >= 0 && (cell instanceof CounterCell || markedAts[idx] >= cell.timestamp()); } /** * Returns a new {@link InOrderTester}. */ InOrderTester inOrderTester() { return new InOrderTester(); } /** * Returns the DeletionTime for the tombstone overlapping {@code name} (there can't be more than one), * or null if {@code name} is not covered by any tombstone. */ public DeletionTime searchDeletionTime(Composite name) { int idx = searchInternal(name, 0); return idx < 0 ? null : new DeletionTime(markedAts[idx], delTimes[idx]); } public RangeTombstone search(Composite name) { int idx = searchInternal(name, 0); return idx < 0 ? null : rangeTombstone(idx); } /* * Return is the index of the range covering name if name is covered. If the return idx is negative, * no range cover name and -idx-1 is the index of the first range whose start is greater than name. */ private int searchInternal(Composite name, int startIdx) { if (isEmpty()) return -1; int pos = Arrays.binarySearch(starts, startIdx, size, name, comparator); if (pos >= 0) { // We're exactly on an interval start. The one subtility is that we need to check if // the previous is not equal to us and doesn't have a higher marked at if (pos > 0 && comparator.compare(name, ends[pos-1]) == 0 && markedAts[pos-1] > markedAts[pos]) return pos-1; else return pos; } else { // We potentially intersect the range before our "insertion point" int idx = -pos-2; if (idx < 0) return -1; return comparator.compare(name, ends[idx]) <= 0 ? idx : -idx-2; } } public int dataSize() { int dataSize = TypeSizes.NATIVE.sizeof(size); for (int i = 0; i < size; i++) { dataSize += starts[i].dataSize() + ends[i].dataSize(); dataSize += TypeSizes.NATIVE.sizeof(markedAts[i]); dataSize += TypeSizes.NATIVE.sizeof(delTimes[i]); } return dataSize; } public long minMarkedAt() { long min = Long.MAX_VALUE; for (int i = 0; i < size; i++) min = Math.min(min, markedAts[i]); return min; } public long maxMarkedAt() { long max = Long.MIN_VALUE; for (int i = 0; i < size; i++) max = Math.max(max, markedAts[i]); return max; } public void updateAllTimestamp(long timestamp) { for (int i = 0; i < size; i++) markedAts[i] = timestamp; } /** * Removes all range tombstones whose local deletion time is older than gcBefore. */ public void purge(int gcBefore) { int j = 0; for (int i = 0; i < size; i++) { if (delTimes[i] >= gcBefore) setInternal(j++, starts[i], ends[i], markedAts[i], delTimes[i]); } size = j; } /** * Returns whether {@code purge(gcBefore)} would remove something or not. */ public boolean hasPurgeableTombstones(int gcBefore) { for (int i = 0; i < size; i++) { if (delTimes[i] < gcBefore) return true; } return false; } private RangeTombstone rangeTombstone(int idx) { return new RangeTombstone(starts[idx], ends[idx], markedAts[idx], delTimes[idx]); } public Iterator iterator() { return new AbstractIterator() { private int idx; protected RangeTombstone computeNext() { if (idx >= size) return endOfData(); return rangeTombstone(idx++); } }; } public Iterator iterator(Composite from, Composite till) { int startIdx = from.isEmpty() ? 0 : searchInternal(from, 0); final int start = startIdx < 0 ? -startIdx-1 : startIdx; if (start >= size) return Iterators.emptyIterator(); int finishIdx = till.isEmpty() ? size : searchInternal(till, start); // if stopIdx is the first range after 'till' we care only until the previous range final int finish = finishIdx < 0 ? -finishIdx-2 : finishIdx; // Note: the following is true because we know 'from' is before 'till' in sorted order. if (start > finish) return Iterators.emptyIterator(); else if (start == finish) return Iterators.singletonIterator(rangeTombstone(start)); return new AbstractIterator() { private int idx = start; protected RangeTombstone computeNext() { if (idx >= size || idx > finish) return endOfData(); return rangeTombstone(idx++); } }; } /** * Evaluates a diff between superset (known to be all merged tombstones) and this list for read repair * * @return null if there is no difference */ public RangeTombstoneList diff(RangeTombstoneList superset) { if (isEmpty()) return superset; RangeTombstoneList diff = null; int j = 0; // index to iterate through our own list for (int i = 0; i < superset.size; i++) { // we can assume that this list is a subset of the superset list while (j < size && comparator.compare(starts[j], superset.starts[i]) < 0) j++; if (j >= size) { // we're at the end of our own list, add the remainder of the superset to the diff if (i < superset.size) { if (diff == null) diff = new RangeTombstoneList(comparator, superset.size - i); for(int k = i; k < superset.size; k++) diff.add(superset.starts[k], superset.ends[k], superset.markedAts[k], superset.delTimes[k]); } return diff; } // we don't care about local deletion time here, because it doesn't matter for read repair if (!starts[j].equals(superset.starts[i]) || !ends[j].equals(superset.ends[i]) || markedAts[j] != superset.markedAts[i]) { if (diff == null) diff = new RangeTombstoneList(comparator, Math.min(8, superset.size - i)); diff.add(superset.starts[i], superset.ends[i], superset.markedAts[i], superset.delTimes[i]); } } return diff; } /** * Calculates digest for triggering read repair on mismatch */ public void updateDigest(MessageDigest digest) { ByteBuffer longBuffer = ByteBuffer.allocate(8); for (int i = 0; i < size; i++) { for (int j = 0; j < starts[i].size(); j++) digest.update(starts[i].get(j).duplicate()); for (int j = 0; j < ends[i].size(); j++) digest.update(ends[i].get(j).duplicate()); longBuffer.putLong(0, markedAts[i]); digest.update(longBuffer.array(), 0, 8); } } @Override public boolean equals(Object o) { if(!(o instanceof RangeTombstoneList)) return false; RangeTombstoneList that = (RangeTombstoneList)o; if (size != that.size) return false; for (int i = 0; i < size; i++) { if (!starts[i].equals(that.starts[i])) return false; if (!ends[i].equals(that.ends[i])) return false; if (markedAts[i] != that.markedAts[i]) return false; if (delTimes[i] != that.delTimes[i]) return false; } return true; } @Override public final int hashCode() { int result = size; for (int i = 0; i < size; i++) { result += starts[i].hashCode() + ends[i].hashCode(); result += (int)(markedAts[i] ^ (markedAts[i] >>> 32)); result += delTimes[i]; } return result; } private static void copyArrays(RangeTombstoneList src, RangeTombstoneList dst) { dst.grow(src.size); System.arraycopy(src.starts, 0, dst.starts, 0, src.size); System.arraycopy(src.ends, 0, dst.ends, 0, src.size); System.arraycopy(src.markedAts, 0, dst.markedAts, 0, src.size); System.arraycopy(src.delTimes, 0, dst.delTimes, 0, src.size); dst.size = src.size; dst.boundaryHeapSize = src.boundaryHeapSize; } /* * Inserts a new element starting at index i. This method assumes that: * ends[i-1] <= start <= ends[i] * * A RangeTombstoneList is a list of range [s_0, e_0]...[s_n, e_n] such that: * - s_i <= e_i * - e_i <= s_i+1 * - if s_i == e_i and e_i == s_i+1 then s_i+1 < e_i+1 * Basically, range are non overlapping except for their bound and in order. And while * we allow ranges with the same value for the start and end, we don't allow repeating * such range (so we can't have [0, 0][0, 0] even though it would respect the first 2 * conditions). * */ private void insertFrom(int i, Composite start, Composite end, long markedAt, int delTime) { while (i < size) { assert i == 0 || comparator.compare(ends[i-1], start) <= 0; int c = comparator.compare(start, ends[i]); assert c <= 0; if (c == 0) { // If start == ends[i], then we can insert from the next one (basically the new element // really start at the next element), except for the case where starts[i] == ends[i]. // In this latter case, if we were to move to next element, we could end up with ...[x, x][x, x]... if (comparator.compare(starts[i], ends[i]) == 0) { // The current element cover a single value which is equal to the start of the inserted // element. If the inserted element overwrites the current one, just remove the current // (it's included in what we insert) and proceed with the insert. if (markedAt > markedAts[i]) { removeInternal(i); continue; } // Otherwise (the current singleton interval override the new one), we want to leave the // current element and move to the next, unless start == end since that means the new element // is in fact fully covered by the current one (so we're done) if (comparator.compare(start, end) == 0) return; } i++; continue; } // Do we overwrite the current element? if (markedAt > markedAts[i]) { // We do overwrite. // First deal with what might come before the newly added one. if (comparator.compare(starts[i], start) < 0) { addInternal(i, starts[i], start, markedAts[i], delTimes[i]); i++; // We don't need to do the following line, but in spirit that's what we want to do // setInternal(i, start, ends[i], markedAts, delTime]) } // now, start <= starts[i] // Does the new element stops before/at the current one, int endCmp = comparator.compare(end, starts[i]); if (endCmp <= 0) { // Here start <= starts[i] and end <= starts[i] // This means the current element is before the current one. However, one special // case is if end == starts[i] and starts[i] == ends[i]. In that case, // the new element entirely overwrite the current one and we can just overwrite if (endCmp == 0 && comparator.compare(starts[i], ends[i]) == 0) setInternal(i, start, end, markedAt, delTime); else addInternal(i, start, end, markedAt, delTime); return; } // Do we overwrite the current element fully? int cmp = comparator.compare(ends[i], end); if (cmp <= 0) { // We do overwrite fully: // update the current element until it's end and continue // on with the next element (with the new inserted start == current end). // If we're on the last element, we can optimize if (i == size-1) { setInternal(i, start, end, markedAt, delTime); return; } setInternal(i, start, ends[i], markedAt, delTime); if (cmp == 0) return; start = ends[i]; i++; } else { // We don't ovewrite fully. Insert the new interval, and then update the now next // one to reflect the not overwritten parts. We're then done. addInternal(i, start, end, markedAt, delTime); i++; setInternal(i, end, ends[i], markedAts[i], delTimes[i]); return; } } else { // we don't overwrite the current element // If the new interval starts before the current one, insert that new interval if (comparator.compare(start, starts[i]) < 0) { // If we stop before the start of the current element, just insert the new // interval and we're done; otherwise insert until the beginning of the // current element if (comparator.compare(end, starts[i]) <= 0) { addInternal(i, start, end, markedAt, delTime); return; } addInternal(i, start, starts[i], markedAt, delTime); i++; } // After that, we're overwritten on the current element but might have // some residual parts after ... // ... unless we don't extend beyond it. if (comparator.compare(end, ends[i]) <= 0) return; start = ends[i]; i++; } } // If we got there, then just insert the remainder at the end addInternal(i, start, end, markedAt, delTime); } private int capacity() { return starts.length; } /* * Adds the new tombstone at index i, growing and/or moving elements to make room for it. */ private void addInternal(int i, Composite start, Composite end, long markedAt, int delTime) { assert i >= 0; if (size == capacity()) growToFree(i); else if (i < size) moveElements(i); setInternal(i, start, end, markedAt, delTime); size++; } private void removeInternal(int i) { assert i >= 0; System.arraycopy(starts, i+1, starts, i, size - i - 1); System.arraycopy(ends, i+1, ends, i, size - i - 1); System.arraycopy(markedAts, i+1, markedAts, i, size - i - 1); System.arraycopy(delTimes, i+1, delTimes, i, size - i - 1); --size; starts[size] = null; ends[size] = null; } /* * Grow the arrays, leaving index i "free" in the process. */ private void growToFree(int i) { int newLength = (capacity() * 3) / 2 + 1; grow(i, newLength); } /* * Grow the arrays to match newLength capacity. */ private void grow(int newLength) { if (capacity() < newLength) grow(-1, newLength); } private void grow(int i, int newLength) { starts = grow(starts, size, newLength, i); ends = grow(ends, size, newLength, i); markedAts = grow(markedAts, size, newLength, i); delTimes = grow(delTimes, size, newLength, i); } private static Composite[] grow(Composite[] a, int size, int newLength, int i) { if (i < 0 || i >= size) return Arrays.copyOf(a, newLength); Composite[] newA = new Composite[newLength]; System.arraycopy(a, 0, newA, 0, i); System.arraycopy(a, i, newA, i+1, size - i); return newA; } private static long[] grow(long[] a, int size, int newLength, int i) { if (i < 0 || i >= size) return Arrays.copyOf(a, newLength); long[] newA = new long[newLength]; System.arraycopy(a, 0, newA, 0, i); System.arraycopy(a, i, newA, i+1, size - i); return newA; } private static int[] grow(int[] a, int size, int newLength, int i) { if (i < 0 || i >= size) return Arrays.copyOf(a, newLength); int[] newA = new int[newLength]; System.arraycopy(a, 0, newA, 0, i); System.arraycopy(a, i, newA, i+1, size - i); return newA; } /* * Move elements so that index i is "free", assuming the arrays have at least one free slot at the end. */ private void moveElements(int i) { if (i >= size) return; System.arraycopy(starts, i, starts, i+1, size - i); System.arraycopy(ends, i, ends, i+1, size - i); System.arraycopy(markedAts, i, markedAts, i+1, size - i); System.arraycopy(delTimes, i, delTimes, i+1, size - i); // we set starts[i] to null to indicate the position is now empty, so that we update boundaryHeapSize // when we set it starts[i] = null; } private void setInternal(int i, Composite start, Composite end, long markedAt, int delTime) { if (starts[i] != null) boundaryHeapSize -= starts[i].unsharedHeapSize() + ends[i].unsharedHeapSize(); starts[i] = start; ends[i] = end; markedAts[i] = markedAt; delTimes[i] = delTime; boundaryHeapSize += start.unsharedHeapSize() + end.unsharedHeapSize(); } @Override public long unsharedHeapSize() { return EMPTY_SIZE + boundaryHeapSize + ObjectSizes.sizeOfArray(starts) + ObjectSizes.sizeOfArray(ends) + ObjectSizes.sizeOfArray(markedAts) + ObjectSizes.sizeOfArray(delTimes); } public static class Serializer implements IVersionedSerializer { private final CType type; public Serializer(CType type) { this.type = type; } public void serialize(RangeTombstoneList tombstones, DataOutputPlus out, int version) throws IOException { if (tombstones == null) { out.writeInt(0); return; } out.writeInt(tombstones.size); for (int i = 0; i < tombstones.size; i++) { type.serializer().serialize(tombstones.starts[i], out); type.serializer().serialize(tombstones.ends[i], out); out.writeInt(tombstones.delTimes[i]); out.writeLong(tombstones.markedAts[i]); } } public RangeTombstoneList deserialize(DataInput in, int version) throws IOException { int size = in.readInt(); if (size == 0) return null; RangeTombstoneList tombstones = new RangeTombstoneList(type, size); for (int i = 0; i < size; i++) { Composite start = type.serializer().deserialize(in); Composite end = type.serializer().deserialize(in); int delTime = in.readInt(); long markedAt = in.readLong(); if (version >= MessagingService.VERSION_20) { tombstones.setInternal(i, start, end, markedAt, delTime); } else { /* * The old implementation used to have range sorted by left value, but with potentially * overlapping range. So we need to use the "slow" path. */ tombstones.add(start, end, markedAt, delTime); } } // The "slow" path take care of updating the size, but not the fast one if (version >= MessagingService.VERSION_20) tombstones.size = size; return tombstones; } public long serializedSize(RangeTombstoneList tombstones, TypeSizes typeSizes, int version) { if (tombstones == null) return typeSizes.sizeof(0); long size = typeSizes.sizeof(tombstones.size); for (int i = 0; i < tombstones.size; i++) { size += type.serializer().serializedSize(tombstones.starts[i], typeSizes); size += type.serializer().serializedSize(tombstones.ends[i], typeSizes); size += typeSizes.sizeof(tombstones.delTimes[i]); size += typeSizes.sizeof(tombstones.markedAts[i]); } return size; } public long serializedSize(RangeTombstoneList tombstones, int version) { return serializedSize(tombstones, TypeSizes.NATIVE, version); } } /** * This object allow testing whether a given column (name/timestamp) is deleted * or not by this RangeTombstoneList, assuming that the column given to this * object are passed in (comparator) sorted order. * * This is more efficient that calling RangeTombstoneList.isDeleted() repeatedly * in that case since we're able to take the sorted nature of the RangeTombstoneList * into account. */ public class InOrderTester { private int idx; public boolean isDeleted(Cell cell) { CellName name = cell.name(); long timestamp = cell.timestamp(); while (idx < size) { int cmp = comparator.compare(name, starts[idx]); if (cmp < 0) { return false; } else if (cmp == 0) { // No matter what the counter cell's timestamp is, a tombstone always takes precedence. See CASSANDRA-7346. if (cell instanceof CounterCell) return true; // As for searchInternal, we need to check the previous end if (idx > 0 && comparator.compare(name, ends[idx-1]) == 0 && markedAts[idx-1] > markedAts[idx]) return markedAts[idx-1] >= timestamp; else return markedAts[idx] >= timestamp; } else { if (comparator.compare(name, ends[idx]) <= 0) return markedAts[idx] >= timestamp || cell instanceof CounterCell; else idx++; } } return false; } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy