org.apache.cassandra.hadoop.ColumnFamilyRecordReader Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of cassandra-all Show documentation
Show all versions of cassandra-all Show documentation
The Apache Cassandra Project develops a highly scalable second-generation distributed database, bringing together Dynamo's fully distributed design and Bigtable's ColumnFamily-based data model.
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.cassandra.hadoop;
import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;
import java.nio.ByteBuffer;
import java.util.*;
import com.google.common.collect.*;
import org.apache.cassandra.db.BufferCell;
import org.apache.cassandra.db.Cell;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.apache.cassandra.exceptions.ConfigurationException;
import org.apache.cassandra.db.composites.CellNames;
import org.apache.cassandra.db.marshal.AbstractType;
import org.apache.cassandra.db.marshal.CompositeType;
import org.apache.cassandra.db.marshal.TypeParser;
import org.apache.cassandra.dht.IPartitioner;
import org.apache.cassandra.thrift.*;
import org.apache.cassandra.utils.ByteBufferUtil;
import org.apache.cassandra.utils.FBUtilities;
import org.apache.cassandra.utils.Pair;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.thrift.TException;
import org.apache.thrift.transport.TTransport;
public class ColumnFamilyRecordReader extends RecordReader>
implements org.apache.hadoop.mapred.RecordReader>
{
private static final Logger logger = LoggerFactory.getLogger(ColumnFamilyRecordReader.class);
public static final int CASSANDRA_HADOOP_MAX_KEY_SIZE_DEFAULT = 8192;
private ColumnFamilySplit split;
private RowIterator iter;
private Pair> currentRow;
private SlicePredicate predicate;
private boolean isEmptyPredicate;
private int totalRowCount; // total number of rows to fetch
private int batchSize; // fetch this many per batch
private String keyspace;
private String cfName;
private Cassandra.Client client;
private ConsistencyLevel consistencyLevel;
private int keyBufferSize = 8192;
private List filter;
public ColumnFamilyRecordReader()
{
this(ColumnFamilyRecordReader.CASSANDRA_HADOOP_MAX_KEY_SIZE_DEFAULT);
}
public ColumnFamilyRecordReader(int keyBufferSize)
{
super();
this.keyBufferSize = keyBufferSize;
}
public void close()
{
if (client != null)
{
TTransport transport = client.getOutputProtocol().getTransport();
if (transport.isOpen())
transport.close();
}
}
public ByteBuffer getCurrentKey()
{
return currentRow.left;
}
public SortedMap getCurrentValue()
{
return currentRow.right;
}
public float getProgress()
{
if (!iter.hasNext())
return 1.0F;
// the progress is likely to be reported slightly off the actual but close enough
float progress = ((float) iter.rowsRead() / totalRowCount);
return progress > 1.0F ? 1.0F : progress;
}
static boolean isEmptyPredicate(SlicePredicate predicate)
{
if (predicate == null)
return true;
if (predicate.isSetColumn_names() && predicate.getSlice_range() == null)
return false;
if (predicate.getSlice_range() == null)
return true;
byte[] start = predicate.getSlice_range().getStart();
if ((start != null) && (start.length > 0))
return false;
byte[] finish = predicate.getSlice_range().getFinish();
if ((finish != null) && (finish.length > 0))
return false;
return true;
}
public void initialize(InputSplit split, TaskAttemptContext context) throws IOException
{
this.split = (ColumnFamilySplit) split;
Configuration conf = HadoopCompat.getConfiguration(context);
KeyRange jobRange = ConfigHelper.getInputKeyRange(conf);
filter = jobRange == null ? null : jobRange.row_filter;
predicate = ConfigHelper.getInputSlicePredicate(conf);
boolean widerows = ConfigHelper.getInputIsWide(conf);
isEmptyPredicate = isEmptyPredicate(predicate);
totalRowCount = (this.split.getLength() < Long.MAX_VALUE)
? (int) this.split.getLength()
: ConfigHelper.getInputSplitSize(conf);
batchSize = ConfigHelper.getRangeBatchSize(conf);
cfName = ConfigHelper.getInputColumnFamily(conf);
consistencyLevel = ConsistencyLevel.valueOf(ConfigHelper.getReadConsistencyLevel(conf));
keyspace = ConfigHelper.getInputKeyspace(conf);
if (batchSize < 2)
throw new IllegalArgumentException("Minimum batchSize is 2. Suggested batchSize is 100 or more");
try
{
if (client != null)
return;
// create connection using thrift
String location = getLocation();
int port = ConfigHelper.getInputRpcPort(conf);
client = ColumnFamilyInputFormat.createAuthenticatedClient(location, port, conf);
}
catch (Exception e)
{
throw new RuntimeException(e);
}
iter = widerows ? new WideRowIterator() : new StaticRowIterator();
logger.debug("created {}", iter);
}
public boolean nextKeyValue() throws IOException
{
if (!iter.hasNext())
{
logger.debug("Finished scanning {} rows (estimate was: {})", iter.rowsRead(), totalRowCount);
return false;
}
currentRow = iter.next();
return true;
}
// we don't use endpointsnitch since we are trying to support hadoop nodes that are
// not necessarily on Cassandra machines, too. This should be adequate for single-DC clusters, at least.
private String getLocation()
{
Collection localAddresses = FBUtilities.getAllLocalAddresses();
for (InetAddress address : localAddresses)
{
for (String location : split.getLocations())
{
InetAddress locationAddress = null;
try
{
locationAddress = InetAddress.getByName(location);
}
catch (UnknownHostException e)
{
throw new AssertionError(e);
}
if (address.equals(locationAddress))
{
return location;
}
}
}
return split.getLocations()[0];
}
private abstract class RowIterator extends AbstractIterator>>
{
protected List rows;
protected int totalRead = 0;
protected final boolean isSuper;
protected final AbstractType> comparator;
protected final AbstractType> subComparator;
protected final IPartitioner partitioner;
private RowIterator()
{
CfDef cfDef = new CfDef();
try
{
partitioner = FBUtilities.newPartitioner(client.describe_partitioner());
// get CF meta data
String query = "SELECT comparator," +
" subcomparator," +
" type " +
"FROM system.schema_columnfamilies " +
"WHERE keyspace_name = '%s' " +
" AND columnfamily_name = '%s' ";
CqlResult result = client.execute_cql3_query(
ByteBufferUtil.bytes(String.format(query, keyspace, cfName)),
Compression.NONE,
ConsistencyLevel.ONE);
Iterator iteraRow = result.rows.iterator();
if (iteraRow.hasNext())
{
CqlRow cqlRow = iteraRow.next();
cfDef.comparator_type = ByteBufferUtil.string(cqlRow.columns.get(0).value);
ByteBuffer subComparator = cqlRow.columns.get(1).value;
if (subComparator != null)
cfDef.subcomparator_type = ByteBufferUtil.string(subComparator);
ByteBuffer type = cqlRow.columns.get(2).value;
if (type != null)
cfDef.column_type = ByteBufferUtil.string(type);
}
comparator = TypeParser.parse(cfDef.comparator_type);
subComparator = cfDef.subcomparator_type == null ? null : TypeParser.parse(cfDef.subcomparator_type);
}
catch (ConfigurationException e)
{
throw new RuntimeException("unable to load sub/comparator", e);
}
catch (TException e)
{
throw new RuntimeException("error communicating via Thrift", e);
}
catch (Exception e)
{
throw new RuntimeException("unable to load keyspace " + keyspace, e);
}
isSuper = "Super".equalsIgnoreCase(cfDef.column_type);
}
/**
* @return total number of rows read by this record reader
*/
public int rowsRead()
{
return totalRead;
}
protected List unthriftify(ColumnOrSuperColumn cosc)
{
if (cosc.counter_column != null)
return Collections.singletonList(unthriftifyCounter(cosc.counter_column));
if (cosc.counter_super_column != null)
return unthriftifySuperCounter(cosc.counter_super_column);
if (cosc.super_column != null)
return unthriftifySuper(cosc.super_column);
assert cosc.column != null;
return Collections.singletonList(unthriftifySimple(cosc.column));
}
private List unthriftifySuper(SuperColumn super_column)
{
List cells = new ArrayList(super_column.columns.size());
for (org.apache.cassandra.thrift.Column column : super_column.columns)
{
Cell c = unthriftifySimple(column);
cells.add(c.withUpdatedName(CellNames.simpleDense(CompositeType.build(super_column.name, c.name().toByteBuffer()))));
}
return cells;
}
protected Cell unthriftifySimple(org.apache.cassandra.thrift.Column column)
{
return new BufferCell(CellNames.simpleDense(column.name), column.value, column.timestamp);
}
private Cell unthriftifyCounter(CounterColumn column)
{
//CounterColumns read the counterID from the System keyspace, so need the StorageService running and access
//to cassandra.yaml. To avoid a Hadoop needing access to yaml return a regular Cell.
return new BufferCell(CellNames.simpleDense(column.name), ByteBufferUtil.bytes(column.value), 0);
}
private List unthriftifySuperCounter(CounterSuperColumn super_column)
{
List cells = new ArrayList(super_column.columns.size());
for (CounterColumn column : super_column.columns)
{
Cell c = unthriftifyCounter(column);
cells.add(c.withUpdatedName(CellNames.simpleDense(CompositeType.build(super_column.name, c.name().toByteBuffer()))));
}
return cells;
}
}
private class StaticRowIterator extends RowIterator
{
protected int i = 0;
private void maybeInit()
{
// check if we need another batch
if (rows != null && i < rows.size())
return;
String startToken;
if (totalRead == 0)
{
// first request
startToken = split.getStartToken();
}
else
{
startToken = partitioner.getTokenFactory().toString(partitioner.getToken(Iterables.getLast(rows).key));
if (startToken.equals(split.getEndToken()))
{
// reached end of the split
rows = null;
return;
}
}
KeyRange keyRange = new KeyRange(batchSize)
.setStart_token(startToken)
.setEnd_token(split.getEndToken())
.setRow_filter(filter);
try
{
rows = client.get_range_slices(new ColumnParent(cfName), predicate, keyRange, consistencyLevel);
// nothing new? reached the end
if (rows.isEmpty())
{
rows = null;
return;
}
// remove ghosts when fetching all columns
if (isEmptyPredicate)
{
Iterator it = rows.iterator();
KeySlice ks;
do
{
ks = it.next();
if (ks.getColumnsSize() == 0)
{
it.remove();
}
} while (it.hasNext());
// all ghosts, spooky
if (rows.isEmpty())
{
// maybeInit assumes it can get the start-with key from the rows collection, so add back the last
rows.add(ks);
maybeInit();
return;
}
}
// reset to iterate through this new batch
i = 0;
}
catch (Exception e)
{
throw new RuntimeException(e);
}
}
protected Pair> computeNext()
{
maybeInit();
if (rows == null)
return endOfData();
totalRead++;
KeySlice ks = rows.get(i++);
AbstractType> comp = isSuper ? CompositeType.getInstance(comparator, subComparator) : comparator;
SortedMap map = new TreeMap(comp);
for (ColumnOrSuperColumn cosc : ks.columns)
{
List cells = unthriftify(cosc);
for (Cell cell : cells)
map.put(cell.name().toByteBuffer(), cell);
}
return Pair.create(ks.key, map);
}
}
private class WideRowIterator extends RowIterator
{
private PeekingIterator>> wideColumns;
private ByteBuffer lastColumn = ByteBufferUtil.EMPTY_BYTE_BUFFER;
private ByteBuffer lastCountedKey = ByteBufferUtil.EMPTY_BYTE_BUFFER;
private void maybeInit()
{
if (wideColumns != null && wideColumns.hasNext())
return;
KeyRange keyRange;
if (totalRead == 0)
{
String startToken = split.getStartToken();
keyRange = new KeyRange(batchSize)
.setStart_token(startToken)
.setEnd_token(split.getEndToken())
.setRow_filter(filter);
}
else
{
KeySlice lastRow = Iterables.getLast(rows);
logger.debug("Starting with last-seen row {}", lastRow.key);
keyRange = new KeyRange(batchSize)
.setStart_key(lastRow.key)
.setEnd_token(split.getEndToken())
.setRow_filter(filter);
}
try
{
rows = client.get_paged_slice(cfName, keyRange, lastColumn, consistencyLevel);
int n = 0;
for (KeySlice row : rows)
n += row.columns.size();
logger.debug("read {} columns in {} rows for {} starting with {}",
new Object[]{ n, rows.size(), keyRange, lastColumn });
wideColumns = Iterators.peekingIterator(new WideColumnIterator(rows));
if (wideColumns.hasNext() && wideColumns.peek().right.keySet().iterator().next().equals(lastColumn))
wideColumns.next();
if (!wideColumns.hasNext())
rows = null;
}
catch (Exception e)
{
throw new RuntimeException(e);
}
}
protected Pair> computeNext()
{
maybeInit();
if (rows == null)
return endOfData();
Pair> next = wideColumns.next();
lastColumn = next.right.keySet().iterator().next().duplicate();
maybeIncreaseRowCounter(next);
return next;
}
/**
* Increases the row counter only if we really moved to the next row.
* @param next just fetched row slice
*/
private void maybeIncreaseRowCounter(Pair> next)
{
ByteBuffer currentKey = next.left;
if (!currentKey.equals(lastCountedKey))
{
totalRead++;
lastCountedKey = currentKey;
}
}
private class WideColumnIterator extends AbstractIterator>>
{
private final Iterator rows;
private Iterator columns;
public KeySlice currentRow;
public WideColumnIterator(List rows)
{
this.rows = rows.iterator();
if (this.rows.hasNext())
nextRow();
else
columns = Iterators.emptyIterator();
}
private void nextRow()
{
currentRow = rows.next();
columns = currentRow.columns.iterator();
}
protected Pair> computeNext()
{
AbstractType> comp = isSuper ? CompositeType.getInstance(comparator, subComparator) : comparator;
while (true)
{
if (columns.hasNext())
{
ColumnOrSuperColumn cosc = columns.next();
SortedMap map;
List cells = unthriftify(cosc);
if (cells.size() == 1)
{
map = ImmutableSortedMap.of(cells.get(0).name().toByteBuffer(), cells.get(0));
}
else
{
assert isSuper;
map = new TreeMap(comp);
for (Cell cell : cells)
map.put(cell.name().toByteBuffer(), cell);
}
return Pair.>create(currentRow.key, map);
}
if (!rows.hasNext())
return endOfData();
nextRow();
}
}
}
}
// Because the old Hadoop API wants us to write to the key and value
// and the new asks for them, we need to copy the output of the new API
// to the old. Thus, expect a small performance hit.
// And obviously this wouldn't work for wide rows. But since ColumnFamilyInputFormat
// and ColumnFamilyRecordReader don't support them, it should be fine for now.
public boolean next(ByteBuffer key, SortedMap value) throws IOException
{
if (this.nextKeyValue())
{
key.clear();
key.put(this.getCurrentKey().duplicate());
key.flip();
value.clear();
value.putAll(this.getCurrentValue());
return true;
}
return false;
}
public ByteBuffer createKey()
{
return ByteBuffer.wrap(new byte[this.keyBufferSize]);
}
public SortedMap createValue()
{
return new TreeMap();
}
public long getPos() throws IOException
{
return (long)iter.rowsRead();
}
}
| | | | | | | | | | |
© 2015 - 2025 Weber Informatics LLC | Privacy Policy