All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.sun.electric.util.math.GenMath Maven / Gradle / Ivy

The newest version!
/* -*- tab-width: 4 -*-
 *
 * Electric(tm) VLSI Design System
 *
 * File: GenMath.java
 *
 * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
 *
 * Electric(tm) is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * Electric(tm) is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Electric(tm); see the file COPYING.  If not, write to
 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
 * Boston, Mass 02111-1307, USA.
 */
package com.sun.electric.util.math;

import java.awt.Point;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;

/**
 * General Math Functions. If you are working in Database Units, you
 * should be using DBMath instead.
 */
public class GenMath {

    /**
     * Minimal integer that is considered "small int".
     * Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
     */
    public static final int MIN_SMALL_COORD = Integer.MIN_VALUE / 2; // 0xC0000000
    /**
     * Maximal ineger that is considered "small int".
     * Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
     */
    public static final int MAX_SMALL_COORD = Integer.MAX_VALUE / 2; // 0x3FFFFFFF
    static final double HALF = 0.5 - 0.5 / (1L << 53); // 0x1.fffffffffffffp-2;

    /**
     * General method to obtain quadrant for a given box in a qTree based on the qTree center.
     * Zero-size boxes are assigned to the positive side of the dividing line.
     * @param centerX the X center of the qTree.
     * @param centerY the Y center of the qTree.
     * @param box the given box.
     * @return the quadrant number.
     */
    public static int getQuadrants(double centerX, double centerY, Rectangle2D box) {
        int loc = 0;

        if (box.getMinY() < centerY) {
            // either 0 or 1 quadtrees
            if (box.getMinX() < centerX) {
                loc |= 1 << 0;
            }
            if (box.getMaxX() >= centerX) {
                loc |= 1 << 1;
            }
        }
        if (box.getMaxY() >= centerY) {
            // the other quadtrees
            if (box.getMinX() < centerX) {
                loc |= 1 << 2;
            }
            if (box.getMaxX() >= centerX) {
                loc |= 1 << 3;
            }
        }
        return loc;
    }

    /**
     * Calculates the bounding box of a child depending on the location. Parameters are passed to avoid
     * extra calculation
     * @param x Parent x value
     * @param y Parent y value
     * @param w Child width (1/4 of parent if qtree)
     * @param h Child height (1/2 of parent if qtree)
     * @param centerX Parent center x value
     * @param centerY Parent center y value
     * @param loc Location in qtree
     */
    public static Rectangle2D getQTreeBox(double x, double y, double w, double h, double centerX, double centerY, int loc) {
        if ((loc >> 0 & 1) == 1) {
            x = centerX;
        }
        if ((loc >> 1 & 1) == 1) {
            y = centerY;
        }
        return (new Rectangle2D.Double(x, y, w, h));
    }

    /**
     * Calculates the bounding box of a child depending on the location.
     * @param box the large box
     * @param loc Location in qtree
     */
    public static FixpRectangle getQTreeBox(AbstractFixpRectangle box, int loc) {
        switch (loc) {
            case 0:
                return FixpRectangle.fromFixpDiagonal(box.getFixpMinX(), box.getFixpMinY(), box.getFixpCenterX(), box.getFixpCenterY());
            case 1:
                return FixpRectangle.fromFixpDiagonal(box.getFixpCenterX(), box.getFixpMinY(), box.getFixpMaxX(), box.getFixpCenterY());
            case 2:
                return FixpRectangle.fromFixpDiagonal(box.getFixpMinX(), box.getFixpCenterY(), box.getFixpCenterX(), box.getFixpMaxY());
            case 3:
                return FixpRectangle.fromFixpDiagonal(box.getFixpCenterX(), box.getFixpCenterY(), box.getFixpMaxX(), box.getFixpMaxY());
        }
        throw new AssertionError();
    }

    /********************************************************************************************************
     *
     *******************************************************************************************************/
    /**
     * Method to transform an array of doubles into a string that can be stored in a preference.
     * The format of the string is "(v1 v2 v3 ...)"
     * @param s the values.
     * @return string representing the array.
     */
    public static String transformArrayIntoString(double[] s) {
        StringBuffer sb = new StringBuffer();
        for (int i = 0; i < s.length; i++) {
            if (i == 0) {
                sb.append('(');
            } else {
                sb.append(' ');
            }
            sb.append(s[i]);
        }
        sb.append(')');
        String dir = sb.toString();
        return dir;
    }

    /**
     * Method to extract an array of doubles from a string.
     * The format of the string is "(v1 v2 v3 ...)"
     * @param vector the input vector in string form.
     * @return the array of values.
     */
    public static double[] transformStringIntoArray(String vector) {
        StringTokenizer parse = new StringTokenizer(vector, "( )", false);
        List valuesFound = new ArrayList();
        while (parse.hasMoreTokens()) {
            String value = parse.nextToken();
            try {
                valuesFound.add(new Double(Double.parseDouble(value)));
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        double[] values = new double[valuesFound.size()];
        for (int i = 0; i < valuesFound.size(); i++) {
            values[i] = valuesFound.get(i).doubleValue();
        }
        return values;
    }

    /**
     * Method to compare two objects for equality.
     * This does more than a simple "equal" because they may have the same value
     * but have diffent type (one Float, the other Double).
     * It also considers floating point values equal if they are "close".
     * @param first the first object to compare.
     * @param second the second object to compare.
     * @return true if they are equal.
     */
    public static boolean objectsReallyEqual(Object first, Object second) {
        // a simple test
        if (first.equals(second)) {
            return true;
        }

        // better comparison of numbers (because one may be Float and the other Double)
        boolean firstNumeric = false, secondNumeric = false;
        double firstValue = 0, secondValue = 0;
        if (first instanceof Float) {
            firstNumeric = true;
            firstValue = ((Float) first).floatValue();
        } else if (first instanceof Double) {
            firstNumeric = true;
            firstValue = ((Double) first).doubleValue();
        } else if (first instanceof Integer) {
            firstNumeric = true;
            firstValue = ((Integer) first).intValue();
        }
        if (second instanceof Float) {
            secondNumeric = true;
            secondValue = ((Float) second).floatValue();
        } else if (second instanceof Double) {
            secondNumeric = true;
            secondValue = ((Double) second).doubleValue();
        } else if (second instanceof Integer) {
            secondNumeric = true;
            secondValue = ((Integer) second).intValue();
        }
        if (firstNumeric && secondNumeric) {
            return doublesEqual(firstValue, secondValue, 1.0e-6);
//            if (firstValue == secondValue) return true;
        }
        if (firstNumeric && second instanceof Boolean) {
            return ((Boolean) second).booleanValue() == (firstValue != 0);
        }
        if (secondNumeric && first instanceof Boolean) {
            return ((Boolean) first).booleanValue() == (secondValue != 0);
        }
        return false;
    }
    /** A transformation matrix that does nothing (identity). */
    public static final FixpTransform MATID = new FixpTransform();

    /**
     * Method to detect if rotation represents a 90 degree rotation in Electric
     * @param rotation the rotation amount.
     * @return true if it is a 90-degree rotation.
     */
    public static boolean isNinetyDegreeRotation(int rotation) {
        return rotation == 900 || rotation == 2700;
    }

    /**
     * Method to return the angle between two points.
     * @param end1 the first point.
     * @param end2 the second point.
     * @return the angle between the points (in tenth-degrees).
     */
    public static int figureAngle(Point2D end1, Point2D end2) {
        return figureAngle(end2.getX() - end1.getX(), end2.getY() - end1.getY());
    }

    /**
     * Method to return the angle of a vector.
     * Return 0 if vector is zero or has NaN components.
     * @param x x-coordinate of a vector.
     * @param y y-coordinate of a vector.
     * @return the angle of a vector.
     */
    public static int figureAngle(double x, double y) {
        int ang = 0;
        if (x == 0) {
            return y > 0 ? 900 : y < 0 ? 2700 : 0;
        }
        if (y == 0) {
            return x < 0 ? 1800 : 0;
        }
        if (y < 0) {
            x = -x;
            y = -y;
            ang = 1800;
        } else if (!(y > 0)) {
            return 0;
        }
        if (x < 0) {
            double t = x;
            x = y;
            y = -t;
            ang += 900;
        } else if (!(x > 0)) {
            return 0;
        }
        assert x > 0 && y > 0;
        if (x == y) {
            return ang + 450;
        }
        ang += (int) (y < x ? 0.5 + Math.atan(y / x) * (1800 / Math.PI) : 900.5 - Math.atan(x / y) * (1800 / Math.PI));
        if (ang >= 3600) {
            ang -= 3600;
        }
        return ang;
    }

    /**
     * Method to return the angle between two points.
     * @param end1 the first point.
     * @param end2 the second point.
     * @return the angle between the points (in radians).
     */
    public static double figureAngleRadians(Point2D end1, Point2D end2) {
        double dx = end2.getX() - end1.getX();
        double dy = end2.getY() - end1.getY();
        if (dx == 0.0 && dy == 0.0) {
            System.out.println("Warning: domain violation while figuring angle in radians");
            return 0;
        }
        double ang = Math.atan2(dy, dx);
        if (ang < 0.0) {
            ang += Math.PI * 2.0;
        }
        return ang;
    }

    /**
     * Method to compute the area of a given rectangle.
     * @param rect the rectangle
     * @return the area of the rectangle
     */
    public static double getArea(Rectangle2D rect) {
        return rect.getWidth() * rect.getHeight();
    }

    /**
     * Method to compute the area of a polygon defined by an array of points.
     * Returns always positive numbers
     * @param points the array of points.
     * @return the area of the polygon defined by these points.
     */
    public static double getAreaOfPoints(Point2D[] points) {
        double area = 0.0;
        double x0 = points[0].getX();
        double y0 = points[0].getY();
        double y1 = 0;
        for (int i = 1; i < points.length; i++) {
            if (points[i] == null) {
                continue; // it could be a complex node from GDS import 
            }
            double x1 = points[i].getX();
            y1 = points[i].getY();

            // triangulate around the polygon
            double p1 = x1 - x0;
            double p2 = y0 + y1;
            double partial = p1 * p2;
            area += partial / 2.0;
            x0 = x1;
            y0 = y1;
        }
        double p1 = points[0].getX() - x0;
        double p2 = points[0].getY() + y1;
        double partial = p1 * p2;
        area += partial / 2.0;
        return Math.abs(area);
    }

    /**
     * Method to return the sum of two points.
     * @param p the first point.
     * @param dx the X component of the second point
     * @param dy the T component of the second point
     * @return the sum of two points.
     */
    public static Point2D addPoints(Point2D p, double dx, double dy) {
        return new Point2D.Double(p.getX() + dx, p.getY() + dy);
    }

    /**
     * Method to tell whether a point is on a given line segment.
     * 

NOTE: If you are comparing Electric database units, DO NOT * use this method. Use the corresponding method from DBMath. * @param end1 the first end of the line segment. * @param end2 the second end of the line segment. * @param pt the point in question. * @return true if the point is on the line segment. */ public static boolean isOnLine(Point2D end1, Point2D end2, Point2D pt) { // trivial rejection if point not in the bounding box of the line if (pt.getX() < Math.min(end1.getX(), end2.getX())) { return false; } if (pt.getX() > Math.max(end1.getX(), end2.getX())) { return false; } if (pt.getY() < Math.min(end1.getY(), end2.getY())) { return false; } if (pt.getY() > Math.max(end1.getY(), end2.getY())) { return false; } // handle manhattan cases specially if (end1.getX() == end2.getX()) { if (pt.getX() == end1.getX()) { return true; } return false; } if (end1.getY() == end2.getY()) { if (pt.getY() == end1.getY()) { return true; } return false; } // handle nonmanhattan if ((pt.getX() - end1.getX()) * (end2.getY() - end1.getY()) == (pt.getY() - end1.getY()) * (end2.getX() - end1.getX())) { return true; } return false; } /** * Method to find the point on a line segment that is closest to a given point. * @param p1 one end of the line segment. * @param p2 the other end of the line segment. * @param pt the point near the line segment. * @return a point on the line segment that is closest to "pt". * The point is guaranteed to be between the two points that define the segment. */ public static Point2D closestPointToSegment(Point2D p1, Point2D p2, Point2D pt) { if (p1 instanceof AbstractFixpPoint&& p2 instanceof AbstractFixpPoint && pt instanceof AbstractFixpPoint) { return closestPointToSegment((AbstractFixpPoint)p1, (AbstractFixpPoint)p2, (AbstractFixpPoint)pt); } // find closest point on line Point2D pi = closestPointToLine(p1, p2, pt); // see if that intersection point is actually on the segment if (pi.getX() >= Math.min(p1.getX(), p2.getX()) && pi.getX() <= Math.max(p1.getX(), p2.getX()) && pi.getY() >= Math.min(p1.getY(), p2.getY()) && pi.getY() <= Math.max(p1.getY(), p2.getY())) { // it is return pi; } // intersection not on segment: choose one endpoint as the closest double dist1 = pt.distance(p1); double dist2 = pt.distance(p2); if (dist2 < dist1) { return p2; } return p1; } /** * Method to find the point on a line segment that is closest to a given point. * @param p1 one end of the line segment. * @param p2 the other end of the line segment. * @param pt the point near the line segment. * @return a point on the line segment that is closest to "pt". * The point is guaranteed to be between the two points that define the segment. */ public static AbstractFixpPoint closestPointToSegment(AbstractFixpPoint p1, AbstractFixpPoint p2, AbstractFixpPoint pt) { // special case for horizontal line if (p1.getFixpY() == p2.getFixpY()) { long x1 = p1.getFixpX(); long x2 = p2.getFixpX(); long x = pt.getFixpX(); if (x1 <= x2) { if (x <= x1) { return p1; } else if (x >= x2) { return p2; } } else { if (x >= x1) { return p1; } else if (x <= x2) { return p2; } } return pt.create(x, p1.getFixpY()); } // special case for vertical line if (p1.getFixpX() == p2.getFixpX()) { long y1 = p1.getFixpY(); long y2 = p2.getFixpY(); long y = pt.getFixpY(); if (y1 <= y2) { if (y <= y1) { return p1; } else if (y >= y2) { return p2; } } else { if (y >= y1) { return p1; } else if (y <= y2) { return p2; } } return pt.create(p1.getFixpX(), y); } // find closest point on line AbstractFixpPoint pi = closestPointToLine(p1, p2, pt); // see if that intersection point is actually on the segment if (pi.getFixpX() >= Math.min(p1.getFixpX(), p2.getFixpX()) && pi.getFixpX() <= Math.max(p1.getFixpX(), p2.getFixpX()) && pi.getFixpY() >= Math.min(p1.getFixpY(), p2.getFixpY()) && pi.getFixpY() <= Math.max(p1.getFixpY(), p2.getFixpY())) { // it is return pi; } // intersection not on segment: choose one endpoint as the closest double dist1 = pt.distance(p1); double dist2 = pt.distance(p2); if (dist2 < dist1) { return p2; } return p1; } /** * Method to find the point on a line that is closest to a given point. * @param p1 one end of the line. * @param p2 the other end of the line. * @param pt the point near the line. * @return a point on the line that is closest to "pt". * The point is not guaranteed to be between the two points that define the line. */ public static Point2D closestPointToLine(Point2D p1, Point2D p2, Point2D pt) { if (p1 instanceof AbstractFixpPoint&& p2 instanceof AbstractFixpPoint && pt instanceof AbstractFixpPoint) { return closestPointToLine((AbstractFixpPoint)p1, (AbstractFixpPoint)p2, (AbstractFixpPoint)pt); } // special case for horizontal line if (p1.getY() == p2.getY()) { return new Point2D.Double(pt.getX(), p1.getY()); } // special case for vertical line if (p1.getX() == p2.getX()) { return new Point2D.Double(p1.getX(), pt.getY()); } // compute equation of the line double m = (p1.getY() - p2.getY()) / (p1.getX() - p2.getX()); double b = -p1.getX() * m + p1.getY(); // compute perpendicular to line through the point double mi = -1.0 / m; double bi = -pt.getX() * mi + pt.getY(); // compute intersection of the lines double t = (bi - b) / (m - mi); return new Point2D.Double(t, m * t + b); } /** * Method to find the point on a line that is closest to a given point. * @param p1 one end of the line. * @param p2 the other end of the line. * @param pt the point near the line. * @return a point on the line that is closest to "pt". * The point is not guaranteed to be between the two points that define the line. */ public static AbstractFixpPoint closestPointToLine(AbstractFixpPoint p1, AbstractFixpPoint p2, AbstractFixpPoint pt) { // special case for horizontal line if (p1.getFixpY() == p2.getFixpY()) { return pt.create(pt.getFixpX(), p1.getFixpY()); } // special case for vertical line if (p1.getFixpX() == p2.getFixpX()) { return pt.create(p1.getFixpX(), pt.getFixpY()); } // compute equation of the line double m = (p1.getFixpY() - p2.getFixpY()) / (double)(p1.getFixpX() - p2.getFixpX()); double b = -p1.getFixpX() * m + p1.getFixpY(); // compute perpendicular to line through the point double mi = -1.0 / m; double bi = -pt.getFixpX() * mi + pt.getFixpY(); // compute intersection of the lines double t = (bi - b) / (m - mi); return pt.create(Math.round(t), Math.round(m * t + b)); } /** * Method to determine whether an arc at angle "ang" can connect the two ports * whose bounding boxes are "lx1<=X<=hx1" and "ly1<=Y<=hy1" for port 1 and * "lx2<=X<=hx2" and "ly2<=Y<=hy2" for port 2. Returns true if a line can * be drawn at that angle between the two ports and returns connection points * in (x1,y1) and (x2,y2) */ public static Point2D[] arcconnects(int ang, Rectangle2D bounds1, Rectangle2D bounds2) { // first try simple solutions Point2D[] points = new Point2D[2]; double lx1 = bounds1.getMinX(), hx1 = bounds1.getMaxX(); double ly1 = bounds1.getMinY(), hy1 = bounds1.getMaxY(); double lx2 = bounds2.getMinX(), hx2 = bounds2.getMaxX(); double ly2 = bounds2.getMinY(), hy2 = bounds2.getMaxY(); if ((ang % 1800) == 0) { // horizontal angle: simply test Y coordinates if (ly1 > hy2 || ly2 > hy1) { return null; } double y = (Math.max(ly1, ly2) + Math.min(hy1, hy2)) / 2; points[0] = new Point2D.Double((lx1 + hx1) / 2, y); points[1] = new Point2D.Double((lx2 + hx2) / 2, y); return points; } if ((ang % 1800) == 900) { // vertical angle: simply test X coordinates if (lx1 > hx2 || lx2 > hx1) { return null; } double x = (Math.max(lx1, lx2) + Math.min(hx1, hx2)) / 2; points[0] = new Point2D.Double(x, (ly1 + hy1) / 2); points[1] = new Point2D.Double(x, (ly2 + hy2) / 2); return points; } // construct an imaginary line at the proper angle that runs through (0,0) double a = GenMath.sin(ang) / 1073741824.0; double b = -GenMath.cos(ang) / 1073741824.0; // get the range of distances from the line to port 1 double lx = lx1; double hx = hx1; double ly = ly1; double hy = hy1; double d = lx * a + ly * b; double low1 = d; double high1 = d; d = hx * a + ly * b; if (d < low1) { low1 = d; } if (d > high1) { high1 = d; } d = hx * a + hy * b; if (d < low1) { low1 = d; } if (d > high1) { high1 = d; } d = lx * a + hy * b; if (d < low1) { low1 = d; } if (d > high1) { high1 = d; } // get the range of distances from the line to port 2 lx = lx2; hx = hx2; ly = ly2; hy = hy2; d = lx * a + ly * b; double low2 = d; double high2 = d; d = hx * a + ly * b; if (d < low2) { low2 = d; } if (d > high2) { high2 = d; } d = hx * a + hy * b; if (d < low2) { low2 = d; } if (d > high2) { high2 = d; } d = lx * a + hy * b; if (d < low2) { low2 = d; } if (d > high2) { high2 = d; } // if the ranges do not overlap, a line cannot be drawn if (low1 > high2 || low2 > high1) { return null; } // the line can be drawn: determine equation (aX + bY = d) d = ((low1 > low2 ? low1 : low2) + (high1 < high2 ? high1 : high2)) / 2.0f; // determine intersection with polygon 1 points[0] = db_findconnectionpoint(lx1, hx1, ly1, hy1, a, b, d); points[0] = db_findconnectionpoint(lx2, hx2, ly2, hy2, a, b, d); return points; } /** * Method to find a point inside the rectangle bounded by (lx<=X<=hx, ly<=Y<=hy) * that satisfies the equation aX + bY = d. Returns the point in (x,y). */ private static Point2D db_findconnectionpoint(double lx, double hx, double ly, double hy, double a, double b, double d) { if (a != 0.0) { double out = (d - b * ly) / a; if (out >= lx && out <= hx) { return new Point2D.Double(out, ly); } out = (d - b * hy) / a; if (out >= lx && out <= hx) { return new Point2D.Double(out, hy); } } if (b != 0.0) { double out = (d - b * lx) / a; if (out >= ly && out <= hy) { return new Point2D.Double(lx, out); } out = (d - b * hx) / a; if (out >= ly && out <= hy) { return new Point2D.Double(hx, out); } } // not the right solution, but nothing else works return new Point2D.Double((lx + hx) / 2, (ly + hy) / 2); } /** * Method to calcute Euclidean distance between two points. * @param p1 the first point. * @param p2 the second point. * @return the distance between the points. */ public static double distBetweenPoints(Point2D p1, Point2D p2) { double deltaX = p1.getX() - p2.getX(); double deltaY = p1.getY() - p2.getY(); return (Math.hypot(deltaX, deltaY)); } /** * Method to compute the distance between point (x,y) and the line that runs * from (x1,y1) to (x2,y2). */ public static double distToLine(Point2D l1, Point2D l2, Point2D pt) { // get point on line from (x1,y1) to (x2,y2) close to (x,y) double x1 = l1.getX(); double y1 = l1.getY(); double x2 = l2.getX(); double y2 = l2.getY(); if (doublesEqual(x1, x2) && doublesEqual(y1, y2)) { return pt.distance(l1); } int ang = figureAngle(l1, l2); Point2D iPt = intersect(l1, ang, pt, ang + 900); double iX = iPt.getX(); double iY = iPt.getY(); if (doublesEqual(x1, x2)) { iX = x1; } if (doublesEqual(y1, y2)) { iY = y1; } // make sure (ix,iy) is on the segment from (x1,y1) to (x2,y2) if (iX < Math.min(x1, x2) || iX > Math.max(x1, x2) || iY < Math.min(y1, y2) || iY > Math.max(y1, y2)) { if (Math.abs(iX - x1) + Math.abs(iY - y1) < Math.abs(iX - x2) + Math.abs(iY - y2)) { iX = x1; iY = y1; } else { iX = x2; iY = y2; } } iPt.setLocation(iX, iY); return iPt.distance(pt); } /** * Method used by "ioedifo.c" and "routmaze.c". */ public static Point2D computeArcCenter(Point2D c, Point2D p1, Point2D p2) { // reconstruct angles to p1 and p2 double radius = p1.distance(c); double a1 = calculateAngle(radius, p1.getX() - c.getX(), p1.getY() - c.getY()); double a2 = calculateAngle(radius, p2.getX() - c.getX(), p1.getY() - c.getY()); if (a1 < a2) { a1 += 3600; } double a = (a1 + a2) / 2; double theta = a * Math.PI / 1800.0; /* in radians */ return new Point2D.Double(c.getX() + radius * Math.cos(theta), c.getY() + radius * Math.sin(theta)); } private static double calculateAngle(double r, double dx, double dy) { double ratio, a1, a2; ratio = 1800.0 / Math.PI; a1 = Math.acos(dx / r) * ratio; a2 = Math.asin(dy / r) * ratio; if (a2 < 0.0) { return 3600.0 - a1; } return a1; } /** * Method to find the two possible centers for a circle given a radius and two edge points. * @param r the radius of the circle. * @param p1 one point on the edge of the circle. * @param p2 the other point on the edge of the circle. * @return an array of two Point2Ds, either of which could be the center. * Returns null if there are no possible centers. * This code was written by John Mohammed of Schlumberger. */ public static Point2D[] findCenters(double r, Point2D p1, Point2D p2) { // quit now if the circles concentric if (p1.getX() == p2.getX() && p1.getY() == p2.getY()) { return null; } // find the intersections, if any double d = p1.distance(p2); double r2 = r * r; double delta_1 = -d / 2.0; double delta_12 = delta_1 * delta_1; // quit if there are no intersections if (r2 < delta_12) { return null; } // compute the intersection points double delta_2 = Math.sqrt(r2 - delta_12); double x1 = p2.getX() + ((delta_1 * (p2.getX() - p1.getX())) + (delta_2 * (p2.getY() - p1.getY()))) / d; double y1 = p2.getY() + ((delta_1 * (p2.getY() - p1.getY())) + (delta_2 * (p1.getX() - p2.getX()))) / d; double x2 = p2.getX() + ((delta_1 * (p2.getX() - p1.getX())) + (delta_2 * (p1.getY() - p2.getY()))) / d; double y2 = p2.getY() + ((delta_1 * (p2.getY() - p1.getY())) + (delta_2 * (p2.getX() - p1.getX()))) / d; Point2D[] retArray = new Point2D[2]; retArray[0] = new Point2D.Double(x1, y1); retArray[1] = new Point2D.Double(x2, y2); return retArray; } /** * Method to determine the intersection of two lines and return that point. * @param p1 a point on the first line. * @param ang1 the angle of the first line (in tenth degrees). * @param p2 a point on the second line. * @param ang2 the angle of the second line (in tenth degrees). * @return a point that is the intersection of the lines. * Returns null if there is no intersection point. */ public static Point2D intersect(Point2D p1, int ang1, Point2D p2, int ang2) { // cannot handle lines if they are at the same angle while (ang1 < 0) { ang1 += 3600; } if (ang1 >= 3600) { ang1 %= 3600; } while (ang2 < 0) { ang2 += 3600; } if (ang2 >= 3600) { ang2 %= 3600; } if (ang1 == ang2) { return null; } // also cannot handle lines that are off by 180 degrees int amin = ang2, amax = ang1; if (ang1 < ang2) { amin = ang1; amax = ang2; } if (amin + 1800 == amax) { return null; } double fa1 = sin(ang1); double fb1 = -cos(ang1); double fc1 = -fa1 * p1.getX() - fb1 * p1.getY(); double fa2 = sin(ang2); double fb2 = -cos(ang2); double fc2 = -fa2 * p2.getX() - fb2 * p2.getY(); if (Math.abs(fa1) < Math.abs(fa2)) { double fswap = fa1; fa1 = fa2; fa2 = fswap; fswap = fb1; fb1 = fb2; fb2 = fswap; fswap = fc1; fc1 = fc2; fc2 = fswap; } double fy = (fa2 * fc1 / fa1 - fc2) / (fb2 - fa2 * fb1 / fa1); return new Point2D.Double((-fb1 * fy - fc1) / fa1, fy); } /** * Method to determine the intersection of two lines and return that point. * @param p1 a point on the first line. * @param ang1 the angle of the first line (in radians). * @param p2 a point on the second line. * @param ang2 the angle of the second line (in radians). * @return a point that is the intersection of the lines. * Returns null if there is no intersection point. */ public static Point2D intersectRadians(Point2D p1, double ang1, Point2D p2, double ang2) { // cannot handle lines if they are at the same angle while (ang1 > Math.PI) { ang1 -= Math.PI; } while (ang1 < 0) { ang1 += Math.PI; } while (ang2 > Math.PI) { ang2 -= Math.PI; } while (ang2 < 0) { ang2 += Math.PI; } if (doublesClose(ang1, ang2)) { return null; } // also at the same angle if off by 180 degrees double fMin = ang2, fMax = ang2; if (ang1 < ang2) { fMin = ang1; fMax = ang2; } if (doublesClose(fMin + Math.PI, fMax)) { return null; } double fa1 = Math.sin(ang1); double fb1 = -Math.cos(ang1); double fc1 = -fa1 * p1.getX() - fb1 * p1.getY(); double fa2 = Math.sin(ang2); double fb2 = -Math.cos(ang2); double fc2 = -fa2 * p2.getX() - fb2 * p2.getY(); if (Math.abs(fa1) < Math.abs(fa2)) { double fswap = fa1; fa1 = fa2; fa2 = fswap; fswap = fb1; fb1 = fb2; fb2 = fswap; fswap = fc1; fc1 = fc2; fc2 = fswap; } double fy = (fa2 * fc1 / fa1 - fc2) / (fb2 - fa2 * fb1 / fa1); return new Point2D.Double((-fb1 * fy - fc1) / fa1, fy); } /** * Method to compute the bounding box of the arc that runs clockwise from * "s" to "e" and is centered at "c". The bounding box is returned. */ public static Rectangle2D arcBBox(Point2D s, Point2D e, Point2D c) { // determine radius and compute bounds of full circle double radius = c.distance(s); double lx = c.getX() - radius; double ly = c.getY() - radius; double hx = c.getX() + radius; double hy = c.getY() + radius; // compute quadrant of two endpoints double x1 = s.getX() - c.getX(); double x2 = e.getX() - c.getX(); double y1 = s.getY() - c.getY(); double y2 = e.getY() - c.getY(); int q1 = db_quadrant(x1, y1); int q2 = db_quadrant(x2, y2); // see if the two endpoints are in the same quadrant if (q1 == q2) { // if the arc runs a full circle, use the MBR of the circle if (q1 == 1 || q1 == 2) { if (x1 > x2) { return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly); }; } else { if (x1 < x2) { return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly); }; } // use the MBR of the two arc points lx = Math.min(s.getX(), e.getX()); hx = Math.max(s.getX(), e.getX()); ly = Math.min(s.getY(), e.getY()); hy = Math.max(s.getY(), e.getY()); return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly); } switch (q1) { case 1: switch (q2) { case 2: // 3 quadrants clockwise from Q1 to Q2 hy = Math.max(y1, y2) + c.getY(); break; case 3: // 2 quadrants clockwise from Q1 to Q3 lx = x2 + c.getX(); hy = y1 + c.getY(); break; case 4: // 1 quadrant clockwise from Q1 to Q4 lx = Math.min(x1, x2) + c.getX(); ly = y2 + c.getY(); hy = y1 + c.getY(); break; } break; case 2: switch (q2) { case 1: // 1 quadrant clockwise from Q2 to Q1 lx = x1 + c.getX(); ly = Math.min(y1, y2) + c.getY(); hx = x2 + c.getX(); break; case 3: // 3 quadrants clockwise from Q2 to Q3 lx = Math.min(x1, x2) + c.getX(); break; case 4: // 2 quadrants clockwise from Q2 to Q4 lx = x1 + c.getX(); ly = y2 + c.getY(); break; } break; case 3: switch (q2) { case 1: // 2 quadrants clockwise from Q3 to Q1 ly = y1 + c.getY(); hx = x2 + c.getX(); break; case 2: // 1 quadrant clockwise from Q3 to Q2 ly = y1 + c.getY(); hx = Math.max(x1, x2) + c.getX(); hy = y2 + c.getY(); break; case 4: // 3 quadrants clockwise from Q3 to Q4 ly = Math.min(y1, y2) + c.getY(); break; } break; case 4: switch (q2) { case 1: // 3 quadrants clockwise from Q4 to Q1 hx = Math.max(x1, x2) + c.getX(); break; case 2: // 2 quadrants clockwise from Q4 to Q2 hx = x1 + c.getX(); hy = y2 + c.getY(); break; case 3: // 1 quadrant clockwise from Q4 to Q3 lx = x2 + c.getX(); hx = x1 + c.getX(); hy = Math.max(y1, y2) + c.getY(); break; } break; } return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly); } /** * compute the quadrant of the point x,y 2 | 1 * Standard quadrants are used: ----- * 3 | 4 */ private static int db_quadrant(double x, double y) { if (x > 0) { if (y >= 0) { return 1; } return 4; } if (y > 0) { return 2; } return 3; } /** * Method to find the two possible centers for a circle whose radius is * "r" and has two points (x01,y01) and (x02,y02) on the edge. The two * center points are returned in (x1,y1) and (x2,y2). The distance between * the points (x01,y01) and (x02,y02) is in "d". The routine returns * false if successful, true if there is no intersection. This code * was written by John Mohammed of Schlumberger. */ public static Point2D[] findCenters(double r, double x01, double y01, double x02, double y02, double d) { /* quit now if the circles concentric */ if (x01 == x02 && y01 == y02) { return null; } /* find the intersections, if any */ double r2 = r * r; double delta_1 = -d / 2.0; double delta_12 = delta_1 * delta_1; /* quit if there are no intersections */ if (r2 < delta_12) { return null; } /* compute the intersection points */ double delta_2 = Math.sqrt(r2 - delta_12); Point2D[] points = new Point2D[2]; double x1 = x02 + ((delta_1 * (x02 - x01)) + (delta_2 * (y02 - y01))) / d; double y1 = y02 + ((delta_1 * (y02 - y01)) + (delta_2 * (x01 - x02))) / d; double x2 = x02 + ((delta_1 * (x02 - x01)) + (delta_2 * (y01 - y02))) / d; double y2 = y02 + ((delta_1 * (y02 - y01)) + (delta_2 * (x02 - x01))) / d; points[0] = new Point2D.Double(x1, y1); points[1] = new Point2D.Double(x2, y2); return points; } /** * Small epsilon value. * set so that 1+DBL_EPSILON != 1 */ private static double DBL_EPSILON = 2.2204460492503131e-016; /** * Method to round a value to the nearest increment. * @param a the value to round. * @param nearest the increment to which it should be rounded. * @return the value, rounded to the nearest increment. * For example:
* toNearest(10.3, 1.0) = 10.0
* toNearest(10.3, 0.1) = 10.3
* toNearest(10.3, 0.5) = 10.5 */ public static double toNearest(double a, double nearest) { long v = Math.round(a / nearest); return v * nearest; } /** * Method to compare two double-precision numbers within an acceptable epsilon. * @param a the first number. * @param b the second number. * @return true if the numbers are equal to 16 decimal places. */ public static boolean doublesEqual(double a, double b) { return doublesEqual(a, b, DBL_EPSILON); } /** * Method to compare two double-precision numbers within a given epsilon * @param a the first number. * @param b the second number. * @param myEpsilon the given epsilon * @return true if the values are close. */ public static boolean doublesEqual(double a, double b, double myEpsilon) { return (Math.abs(a - b) <= myEpsilon); } /** * Method to compare two numbers and see if one is less than the other within an acceptable epsilon. * @param a the first number. * @param b the second number. * @return true if "a" is less than "b" to 16 decimal places. */ public static boolean doublesLessThan(double a, double b) { if (a + DBL_EPSILON < b) { return true; } return false; } /** * Method to compare two double-precision numbers within an approximate epsilon. *

NOTE: If you are comparing Electric database units, DO NOT * use this method. Use the corresponding method from DBMath. * @param a the first number. * @param b the second number. * @return true if the numbers are approximately equal (to a few decimal places). */ public static boolean doublesClose(double a, double b) { if (b != 0) { double ratio = a / b; if (ratio < 1.00001 && ratio > 0.99999) { return true; } } if (Math.abs(a - b) < 0.001) { return true; } return false; } // /** // * Method to round floating-point values to sensible quantities. // * Rounds these numbers to the nearest thousandth. // * @param a the value to round. // * @return the rounded value. // */ // public static double smooth(double a) // { // long i = Math.round(a * 1000.0); // return i / 1000.0; // } // ************************************* CLIPPING ************************************* private static final int LEFT = 1; private static final int RIGHT = 2; private static final int BOTTOM = 4; private static final int TOP = 8; /** * Method to clip a line against a rectangle (in double-precision). * @param from one end of the line. * @param to the other end of the line. * @param lX the low X bound of the clip. * @param hX the high X bound of the clip. * @param lY the low Y bound of the clip. * @param hY the high Y bound of the clip. * The points are modified to fit inside of the clip area. * @return true if the line is not visible. */ public static boolean clipLine(Point2D from, Point2D to, double lX, double hX, double lY, double hY) { for (;;) { // compute code bits for "from" point int fc = 0; if (from.getX() < lX) { fc |= LEFT; } else if (from.getX() > hX) { fc |= RIGHT; } if (from.getY() < lY) { fc |= BOTTOM; } else if (from.getY() > hY) { fc |= TOP; } // compute code bits for "to" point int tc = 0; if (to.getX() < lX) { tc |= LEFT; } else if (to.getX() > hX) { tc |= RIGHT; } if (to.getY() < lY) { tc |= BOTTOM; } else if (to.getY() > hY) { tc |= TOP; } // look for trivial acceptance or rejection if (fc == 0 && tc == 0) { return false; } if (fc == tc || (fc & tc) != 0) { return true; } // make sure the "from" side needs clipping if (fc == 0) { double x = from.getX(); double y = from.getY(); from.setLocation(to); to.setLocation(x, y); int t = fc; fc = tc; tc = t; } if ((fc & LEFT) != 0) { if (to.getX() == from.getX()) { return true; } double t = (to.getY() - from.getY()) * (lX - from.getX()) / (to.getX() - from.getX()); from.setLocation(lX, from.getY() + t); } if ((fc & RIGHT) != 0) { if (to.getX() == from.getX()) { return true; } double t = (to.getY() - from.getY()) * (hX - from.getX()) / (to.getX() - from.getX()); from.setLocation(hX, from.getY() + t); } if ((fc & BOTTOM) != 0) { if (to.getY() == from.getY()) { return true; } double t = (to.getX() - from.getX()) * (lY - from.getY()) / (to.getY() - from.getY()); from.setLocation(from.getX() + t, lY); } if ((fc & TOP) != 0) { if (to.getY() == from.getY()) { return true; } double t = (to.getX() - from.getX()) * (hY - from.getY()) / (to.getY() - from.getY()); from.setLocation(from.getX() + t, hY); } } } /** * Method to clip a line against a rectangle (in integer). * @param from one end of the line. * @param to the other end of the line. * @param lx the low X bound of the clip. * @param hx the high X bound of the clip. * @param ly the low Y bound of the clip. * @param hy the high Y bound of the clip. * The points are modified to fit inside of the clip area. * @return true if the line is not visible. */ public static boolean clipLine(Point from, Point to, int lx, int hx, int ly, int hy) { for (;;) { // compute code bits for "from" point int fc = 0; if (from.x < lx) { fc |= LEFT; } else if (from.x > hx) { fc |= RIGHT; } if (from.y < ly) { fc |= BOTTOM; } else if (from.y > hy) { fc |= TOP; } // compute code bits for "to" point int tc = 0; if (to.x < lx) { tc |= LEFT; } else if (to.x > hx) { tc |= RIGHT; } if (to.y < ly) { tc |= BOTTOM; } else if (to.y > hy) { tc |= TOP; } // look for trivial acceptance or rejection if (fc == 0 && tc == 0) { return false; } if (fc == tc || (fc & tc) != 0) { return true; } // make sure the "from" side needs clipping if (fc == 0) { int t = from.x; from.x = to.x; to.x = t; t = from.y; from.y = to.y; to.y = t; t = fc; fc = tc; tc = t; } if ((fc & LEFT) != 0) { if (to.x == from.x) { return true; } int t = (to.y - from.y) * (lx - from.x) / (to.x - from.x); from.y += t; from.x = lx; } if ((fc & RIGHT) != 0) { if (to.x == from.x) { return true; } int t = (to.y - from.y) * (hx - from.x) / (to.x - from.x); from.y += t; from.x = hx; } if ((fc & BOTTOM) != 0) { if (to.y == from.y) { return true; } int t = (to.x - from.x) * (ly - from.y) / (to.y - from.y); from.x += t; from.y = ly; } if ((fc & TOP) != 0) { if (to.y == from.y) { return true; } int t = (to.x - from.x) * (hy - from.y) / (to.y - from.y); from.x += t; from.y = hy; } } } /** * Method to clip a polygon against a rectangular region. * @param points an array of points that define the polygon. * @param lx the low X bound of the clipping region. * @param hx the high X bound of the clipping region. * @param ly the low Y bound of the clipping region. * @param hy the high Y bound of the clipping region. * @return an array of Points that are clipped to the region. */ public static Point[] clipPoly(Point[] points, int lx, int hx, int ly, int hy) { // see if any points are outside int count = points.length; int pre = 0; for (int i = 0; i < count; i++) { if (points[i].x < lx) { pre |= LEFT; } else if (points[i].x > hx) { pre |= RIGHT; } if (points[i].y < ly) { pre |= BOTTOM; } else if (points[i].y > hy) { pre |= TOP; } } if (pre == 0) { return points; } // get polygon Point[] in = new Point[count * 2]; for (int i = 0; i < count * 2; i++) { in[i] = new Point(); if (i < count) { in[i].setLocation(points[i]); } } Point[] out = new Point[count * 2]; for (int i = 0; i < count * 2; i++) { out[i] = new Point(); } // clip on all four sides Point[] a = in; Point[] b = out; if ((pre & LEFT) != 0) { count = clipEdge(a, count, b, LEFT, lx); Point[] swap = a; a = b; b = swap; } if ((pre & RIGHT) != 0) { count = clipEdge(a, count, b, RIGHT, hx); Point[] swap = a; a = b; b = swap; } if ((pre & TOP) != 0) { count = clipEdge(a, count, b, TOP, hy); Point[] swap = a; a = b; b = swap; } if ((pre & BOTTOM) != 0) { count = clipEdge(a, count, b, BOTTOM, ly); Point[] swap = a; a = b; b = swap; } // remove redundant points from polygon pre = 0; for (int i = 0; i < count; i++) { if (i > 0 && a[i - 1].x == a[i].x && a[i - 1].y == a[i].y) { continue; } b[pre].x = a[i].x; b[pre].y = a[i].y; pre++; } // closed polygon: remove redundancy on wrap-around while (pre != 0 && b[0].x == b[pre - 1].x && b[0].y == b[pre - 1].y) { pre--; } count = pre; // copy the polygon back if it in the wrong place Point[] retArr = new Point[count]; for (int i = 0; i < count; i++) { retArr[i] = b[i]; } return retArr; } /** * Method to clip polygon "in" against line "edge" (1:left, 2:right, * 4:bottom, 8:top) and place clipped result in "out". */ private static int clipEdge(Point[] in, int inCount, Point[] out, int edge, int value) { // look at all the lines Point first = new Point(); Point second = new Point(); int firstx = 0, firsty = 0; int outcount = 0; for (int i = 0; i < inCount; i++) { int pre = i - 1; if (i == 0) { pre = inCount - 1; } first.setLocation(in[pre]); second.setLocation(in[i]); if (clipSegment(first, second, edge, value)) { continue; } int x1 = first.x; int y1 = first.y; int x2 = second.x; int y2 = second.y; if (outcount != 0) { if (x1 != out[outcount - 1].x || y1 != out[outcount - 1].y) { out[outcount].x = x1; out[outcount++].y = y1; } } else { firstx = x1; firsty = y1; } out[outcount].x = x2; out[outcount++].y = y2; } if (outcount != 0 && (out[outcount - 1].x != firstx || out[outcount - 1].y != firsty)) { out[outcount].x = firstx; out[outcount++].y = firsty; } return outcount; } /** * Method to do clipping on the vector from (x1,y1) to (x2,y2). * If the vector is completely invisible, true is returned. */ private static boolean clipSegment(Point p1, Point p2, int codebit, int value) { int x1 = p1.x; int y1 = p1.y; int x2 = p2.x; int y2 = p2.y; int c1 = 0, c2 = 0; if (codebit == LEFT) { if (x1 < value) { c1 = codebit; } if (x2 < value) { c2 = codebit; } } else if (codebit == BOTTOM) { if (y1 < value) { c1 = codebit; } if (y2 < value) { c2 = codebit; } } else if (codebit == RIGHT) { if (x1 > value) { c1 = codebit; } if (x2 > value) { c2 = codebit; } } else if (codebit == TOP) { if (y1 > value) { c1 = codebit; } if (y2 > value) { c2 = codebit; } } if (c1 == c2) { return c1 != 0; } boolean flip = false; if (c1 == 0) { int t = x1; x1 = x2; x2 = t; t = y1; y1 = y2; y2 = t; flip = true; } if (codebit == LEFT || codebit == RIGHT) { long t = (y2 - y1); t *= (value - x1); t /= (x2 - x1); y1 += t; x1 = value; } else if (codebit == BOTTOM || codebit == TOP) { long t = (x2 - x1); t *= (value - y1); t /= (y2 - y1); x1 += t; y1 = value; } if (flip) { p1.x = x2; p1.y = y2; p2.x = x1; p2.y = y1; } else { p1.x = x1; p1.y = y1; p2.x = x2; p2.y = y2; } return false; } /** * Returns true if the first argument is the multiple of divisor. * @param x the first argument * @param divisor the divisor * @return true if x is the multiple of divisor */ public static boolean isMultiple(long x, long divisor) { return (divisor & (divisor - 1)) == 0 ? (x & (divisor - 1)) == 0 : x % divisor == 0; } /** * Rounds long number to multiple of divisor in specified rounding direction. * This method accepts any arguments but it may be slower that specialized roundToMultiple methods. * @param x long number to round * @param divisor divisor * @param roundingMode rounding direction * @return rounded multiple of divisor * @throws ArithmeticException if rounded result doesn't fit in long * @throws ArithmeticException if roundingMode is UNNECESSARY and x is not multiple of divisor */ public static long roundToMultiple(long x, long divisor, RoundingMode roundingMode) { long multiple; long modulo; boolean oddK; if ((divisor & (divisor - 1)) == 0) { multiple = x & ~(divisor - 1); modulo = x & (divisor - 1); oddK = (x & divisor) != 0; } else { divisor = Math.abs(divisor); long k = x / divisor; multiple = k * divisor; oddK = (k & 1) != 0; modulo = x - multiple; if (modulo < 0) { multiple -= divisor; modulo += divisor; oddK = !oddK; } } if (modulo == 0) { if (roundingMode == null) { throw new NullPointerException(); } return x; } long cmpHalf = modulo * 2 - divisor; boolean correction = false; switch (roundingMode) { case UP: correction = x > 0; break; case DOWN: correction = x < 0; break; case CEILING: correction = true; break; case FLOOR: correction = false; break; case HALF_UP: correction = x > 0 ? cmpHalf >= 0 : cmpHalf > 0; break; case HALF_DOWN: correction = x > 0 ? cmpHalf > 0 : cmpHalf >= 0; break; case HALF_EVEN: correction = cmpHalf > 0 || cmpHalf == 0 && oddK; break; default: throw new ArithmeticException(); } if (correction) { multiple += divisor; } if ((x^multiple) < 0 && multiple != 0) { throw new ArithmeticException(); } return multiple; } public static long roundToMultipleFloor(long x, long divisor) { if ((divisor & (divisor - 1)) == 0) { return x & ~(divisor - 1); } long multiple = x / divisor * divisor; if (x < 0) { long modulo = x - multiple; if (modulo != 0) { multiple -= Math.abs(divisor); if (multiple >= 0) { throw new ArithmeticException(); } } } return multiple; } public static long roundToMultipleCeiling(long x, long divisor) { if ((divisor & (divisor - 1)) == 0) { if ((x & (divisor - 1)) == 0) { return x; } long multiple = (x & ~(divisor - 1)) + divisor; if (multiple == Long.MIN_VALUE) { throw new ArithmeticException(); } return multiple; } long multiple = x / divisor * divisor; if (x >= 0) { long modulo = x - multiple; if (modulo != 0) { multiple += Math.abs(divisor); if (multiple < 0) { throw new ArithmeticException(); } } } return multiple; } public static long roundToMultiple(long x, long divisor) { long multiple; long modulo; if ((divisor & (divisor - 1)) == 0) { modulo = x & (divisor - 1); if (modulo == 0) { return x; } multiple = x & ~(divisor - 1); long cmpHalf = modulo * 2 - divisor; if (cmpHalf > 0 || cmpHalf == 0 && (x & divisor) != 0) { multiple += divisor; if (multiple == Long.MIN_VALUE) { throw new ArithmeticException(); } } return multiple; } long k = x / divisor; multiple = k * divisor; modulo = x - multiple; if (modulo == 0) { return x; } divisor = Math.abs(divisor); boolean oddK = (k & 1) != 0; if (modulo < 0) { multiple -= divisor; modulo += divisor; oddK = !oddK; } long cmpHalf = modulo * 2 - divisor; boolean correction = cmpHalf > 0 || cmpHalf == 0 && oddK; if (correction) { multiple += divisor; } if ((x^multiple) < 0 && multiple != 0) { throw new ArithmeticException(); } return multiple; } public static long roundToMultiple0(long x, long divisor) { if (divisor == Long.lowestOneBit(divisor)) { return roundShift(x, divisor); } if (divisor <= 0) { throw new IllegalArgumentException(); } return x >= 0 ? roundToMultipleHalfEven(x, divisor) : -roundToMultipleHalfEven(-x, divisor); } private static long roundShift(long fixp, long res) { return roundShift1(fixp, res); } private static long roundShift1(long fixp, long res) { long half = res >> 1; long resFraction = fixp & (res - 1); if (resFraction == 0) { return fixp; } long newFixp = (fixp + half) & -res; if (resFraction == half && (fixp & res) == 0) { newFixp &= ~res; } return newFixp; } private static long roundToMultipleHalfEven(long posFixp, long res) { assert posFixp >= 0; return roundDiv1(posFixp, res); } private static long roundDiv1(long posFixp, long res) { long halfRes = res >> 1; long k = posFixp / halfRes; long newFixp = k * halfRes; if ((k & 1) != 0) { newFixp = newFixp != posFixp || (k & 2) != 0 ? newFixp + halfRes : newFixp - halfRes; } return newFixp; } /** * Returns the closest long to the argument. The result * is rounded to an integer by adding 1/2, taking the floor of the * result, and casting the result to type long. In other * words, the result is equal to the value of the expression: *

(long)Math.floor(a + 0.5d)
*

* Special cases: *

  • If the argument is NaN, the result is 0. *
  • If the argument is negative infinity or any value less than or * equal to the value of Long.MIN_VALUE, the result is * equal to the value of Long.MIN_VALUE. *
  • If the argument is positive infinity or any value greater than or * equal to the value of Long.MAX_VALUE, the result is * equal to the value of Long.MAX_VALUE.
* * @param x a floating-point value to be rounded to a long. * @return the value of the argument rounded to the nearest long value. * @see java.lang.Long#MAX_VALUE * @see java.lang.Long#MIN_VALUE */ public static long roundLong(double x) { return (long) (x >= 0 ? x + HALF : x - HALF); } public static double rint(double x) { double twoToThe52 = (1L << 52); // 2^52 if (x >= 0) { if (x < twoToThe52) { return (twoToThe52 + x) - twoToThe52; } } else { if (x > -twoToThe52) { return (-twoToThe52 + x) + twoToThe52; } } return x; } public static int roundInt(double x) { return (int) (x >= 0 ? x + HALF : x - HALF); } public static long floorLong(double x) { long v = (long) x; return x >= 0 || v == x ? v : x > Long.MIN_VALUE ? v - 1 : Long.MIN_VALUE; } public static long ceilLong(double x) { long v = (long) x; return x <= 0 || v == x ? v : x < Long.MAX_VALUE ? v + 1 : Long.MAX_VALUE; } public static int floorInt(double x) { int v = (int) x; return x >= 0 || v == x ? v : x > Integer.MIN_VALUE ? v - 1 : Integer.MIN_VALUE; } public static int ceilInt(double x) { int v = (int) x; return x <= 0 || v == x ? v : x < Integer.MAX_VALUE ? v + 1 : Integer.MAX_VALUE; } // precomputed sinus table private static final double SIN30 = 0.5; private static final double SIN45 = 0.7071067811865476; private static final double[] sineTable = { 0.0, 0.0017453283658983088, 0.003490651415223732, 0.00523596383141958, 0.0069812602979615525, 0.008726535498373935, 0.010471784116245792, 0.012217000835247169, 0.013962180339145272, 0.015707317311820675, 0.01745240643728351, 0.019197442399689665, 0.020942419883356957, 0.022687333572781358, 0.024432178152653153, 0.02617694830787315, 0.02792163872356888, 0.029666244085110757, 0.03141075907812829, 0.033155178388526274, 0.03489949670250097, 0.036643708706556276, 0.03838780908751994, 0.04013179253255973, 0.04187565372919962, 0.043619387365336, 0.04536298812925378, 0.04710645070964266, 0.04884976979561326, 0.05059294007671331, 0.05233595624294383, 0.05407881298477529, 0.0558215049931638, 0.057564026959567284, 0.05930637357596162, 0.061048539534856866, 0.06279051952931337, 0.06453230825295798, 0.06627390040000014, 0.06801529066524817, 0.0697564737441253, 0.07149744433268591, 0.07323819712763169, 0.0749787268263277, 0.07671902812681863, 0.07845909572784494, 0.08019892432885892, 0.08193850863004093, 0.08367784333231548, 0.08541692313736746, 0.08715574274765817, 0.08889429686644151, 0.09063258019778016, 0.09237058744656158, 0.09410831331851431, 0.095845752520224, 0.09758289975914947, 0.099319749743639, 0.10105629718294634, 0.1027925367872468, 0.10452846326765346, 0.1062640713362332, 0.10799935570602284, 0.10973431109104527, 0.11146893220632548, 0.11320321376790671, 0.11493715049286661, 0.11667073709933316, 0.11840396830650095, 0.1201368388346471, 0.12186934340514746, 0.12360147674049271, 0.12533323356430426, 0.12706460860135046, 0.1287955965775628, 0.13052619222005157, 0.13225639025712244, 0.13398618541829205, 0.13571557243430438, 0.13744454603714665, 0.13917310096006544, 0.14090123193758267, 0.14262893370551163, 0.1443562010009732, 0.14608302856241162, 0.14780941112961063, 0.14953534344370953, 0.1512608202472192, 0.15298583628403806, 0.1547103862994681, 0.15643446504023087, 0.15815806725448353, 0.15988118769183485, 0.1616038211033611, 0.16332596224162227, 0.16504760586067765, 0.16676874671610226, 0.16848937956500257, 0.17020949916603254, 0.17192910027940955, 0.17364817766693033, 0.1753667260919871, 0.1770847403195833, 0.17880221511634958, 0.18051914525055998, 0.18223552549214747, 0.18395135061272017, 0.1856666153855772, 0.1873813145857246, 0.18909544298989128, 0.19080899537654483, 0.19252196652590742, 0.19423435121997196, 0.1959461442425177, 0.19765734037912613, 0.1993679344171972, 0.20107792114596468, 0.2027872953565125, 0.20449605184179032, 0.20620418539662963, 0.20791169081775931, 0.20961856290382183, 0.21132479645538865, 0.21303038627497656, 0.2147353271670632, 0.21643961393810285, 0.21814324139654254, 0.21984620435283753, 0.2215484976194673, 0.22325011601095135, 0.22495105434386498, 0.22665130743685505, 0.22835087011065575, 0.2300497371881044, 0.23174790349415733, 0.2334453638559054, 0.23514211310259, 0.23683814606561868, 0.23853345757858088, 0.24022804247726373, 0.2419218955996677, 0.2436150117860225, 0.24530738587880258, 0.2469990127227429, 0.2486898871648548, 0.2503800040544414, 0.2520693582431136, 0.25375794458480566, 0.25544575793579055, 0.25713279315469617, 0.25881904510252074, 0.26050450864264835, 0.2621891786408647, 0.26387304996537286, 0.2655561174868088, 0.26723837607825685, 0.2689198206152657, 0.27060044597586363, 0.27228024704057435, 0.27395921869243245, 0.27563735581699916, 0.2773146533023778, 0.2789911060392293, 0.28066670892078777, 0.2823414568428764, 0.2840153447039226, 0.28568836740497355, 0.287360519849712, 0.2890317969444716, 0.2907021935982525, 0.29237170472273677, 0.29404032523230395, 0.29570805004404666, 0.29737487407778596, 0.29904079225608665, 0.3007057995042731, 0.30236989075044446, 0.3040330609254903, 0.30569530496310565, 0.30735661779980705, 0.3090169943749474, 0.3106764296307318, 0.31233491851223255, 0.31399245596740494, 0.31564903694710245, 0.3173046564050921, 0.3189593092980699, 0.32061299058567627, 0.3222656952305111, 0.3239174181981494, 0.3255681544571567, 0.3272178989791039, 0.32886664673858323, 0.330514392713223, 0.3321611318837033, 0.3338068592337709, 0.335451569750255, 0.3370952584230821, 0.3387379202452914, 0.34037955021305016, 0.3420201433256687, 0.34365969458561607, 0.34529819899853464, 0.34693565157325584, 0.3485720473218152, 0.35020738125946743, 0.3518416484047018, 0.3534748437792571, 0.35510696240813705, 0.3567379993196252, 0.35836794954530027, 0.3599968081200512, 0.3616245700820923, 0.36325123047297836, 0.3648767843376196, 0.36650122672429725, 0.3681245526846779, 0.3697467572738293, 0.3713678355502348, 0.37298778257580895, 0.37460659341591207, 0.3762242631393656, 0.3778407868184671, 0.3794561595290051, 0.3810703763502741, 0.3826834323650898, 0.3842953226598037, 0.38590604232431863, 0.38751558645210293, 0.38912395014020623, 0.39073112848927377, 0.39233711660356146, 0.3939419095909511, 0.39554550256296495, 0.3971478906347806, 0.3987490689252462, 0.4003490325568949, 0.4019477766559601, 0.40354529635239, 0.4051415867798625, 0.40673664307580015, 0.40833046038138493, 0.4099230338415728, 0.41151435860510877, 0.41310442982454176, 0.414693242656239, 0.41628079226040116, 0.41786707380107674, 0.4194520824461771, 0.421035813367491, 0.4226182617406994, 0.4241994227453902, 0.42577929156507266, 0.4273578633871924, 0.4289351334031459, 0.43051109680829514, 0.4320857488019823, 0.43365908458754426, 0.43523109937232746, 0.43680178836770217, 0.4383711467890774, 0.4399391698559151, 0.4415058527917452, 0.44307119082417973, 0.4446351791849275, 0.44619781310980877, 0.44775908783876966, 0.4493189986158966, 0.45087754068943076, 0.4524347093117827, 0.45399049973954675, 0.4555449072335155, 0.4570979270586942, 0.45864955448431494, 0.46019978478385165, 0.4617486132350339, 0.4632960351198617, 0.4648420457246196, 0.4663866403398912, 0.46792981426057334, 0.46947156278589075, 0.47101188121940996, 0.47255076486905395, 0.4740882090471163, 0.47562420907027525, 0.4771587602596084, 0.4786918579406068, 0.48022349744318893, 0.4817536741017153, 0.4832823832550024, 0.48480962024633695, 0.48633538042349045, 0.4878596591387326, 0.4893824517488462, 0.4909037536151409, 0.49242356010346716, 0.493941866584231, 0.4954586684324075, 0.49697396102755526, 0.49848773975383026, SIN30, 0.5015107371594573, 0.503019946630235, 0.5045276238150193, 0.5060337641211637, 0.5075383629607041, 0.5090414157503713, 0.5105429179116057, 0.5120428648705715, 0.51354125205817, 0.5150380749100542, 0.5165333288666418, 0.5180270093731302, 0.5195191118795094, 0.5210096318405764, 0.5224985647159488, 0.5239859059700791, 0.5254716510722678, 0.5269557954966776, 0.5284383347223471, 0.5299192642332049, 0.5313985795180829, 0.53287627607073, 0.5343523493898263, 0.5358267949789967, 0.5372996083468239, 0.5387707850068629, 0.540240320477655, 0.5417082102827397, 0.5431744499506707, 0.544639035015027, 0.5461019610144291, 0.5475632234925503, 0.5490228179981317, 0.5504807400849956, 0.5519369853120581, 0.5533915492433441, 0.5548444274479992, 0.5562956155003048, 0.5577451089796901, 0.5591929034707469, 0.5606389945632416, 0.5620833778521306, 0.5635260489375715, 0.5649670034249379, 0.5664062369248328, 0.5678437450531012, 0.5692795234308442, 0.5707135676844316, 0.5721458734455162, 0.573576436351046, 0.5750052520432786, 0.5764323161697932, 0.5778576243835053, 0.5792811723426788, 0.5807029557109398, 0.5821229701572894, 0.5835412113561175, 0.5849576749872154, 0.5863723567357892, 0.5877852522924731, 0.589196357353342, 0.5906056676199254, 0.5920131787992196, 0.5934188866037015, 0.5948227867513413, 0.5962248749656158, 0.5976251469755212, 0.5990235985155858, 0.600420225325884, 0.6018150231520482, 0.6032079877452825, 0.6045991148623747, 0.605988400265711, 0.6073758397232867, 0.6087614290087207, 0.6101451639012676, 0.6115270401858311, 0.6129070536529765, 0.6142852000989432, 0.6156614753256583, 0.6170358751407485, 0.6184083953575542, 0.61977903179514, 0.6211477802783103, 0.6225146366376195, 0.6238795967093861, 0.6252426563357052, 0.6266038113644604, 0.6279630576493379, 0.6293203910498374, 0.6306758074312863, 0.6320293026648508, 0.6333808726275502, 0.6347305132022676, 0.636078220277764, 0.6374239897486897, 0.6387678175155976, 0.6401096994849556, 0.6414496315691578, 0.6427876096865393, 0.6441236297613865, 0.6454576877239505, 0.6467897795104596, 0.6481199010631309, 0.6494480483301835, 0.6507742172658509, 0.6520984038303922, 0.6534206039901054, 0.6547408137173397, 0.6560590289905073, 0.6573752457940958, 0.6586894601186803, 0.6600016679609367, 0.6613118653236518, 0.6626200482157375, 0.6639262126522416, 0.6652303546543609, 0.6665324702494525, 0.6678325554710466, 0.6691306063588582, 0.6704266189587991, 0.6717205893229902, 0.6730125135097733, 0.6743023875837234, 0.6755902076156601, 0.6768759696826607, 0.6781596698680706, 0.6794413042615165, 0.6807208689589178, 0.6819983600624985, 0.6832737736807992, 0.6845471059286886, 0.6858183529273763, 0.687087510804423, 0.6883545756937539, 0.6896195437356697, 0.6908824110768583, 0.6921431738704068, 0.693401828275813, 0.6946583704589974, 0.6959127965923143, 0.6971651028545645, 0.6984152854310058, 0.6996633405133654, 0.7009092642998509, 0.7021530529951624, 0.7033947028105039, 0.7046342099635946, 0.705871570678681, SIN45, 0.7083398377245288, 0.7095707365365209, 0.7107994738729925, 0.7120260459909965, 0.7132504491541816, 0.7144726796328033, 0.7156927337037359, 0.7169106076504826, 0.7181262977631888, 0.7193398003386512, 0.7205511116803304, 0.7217602280983622, 0.7229671459095681, 0.7241718614374675, 0.7253743710122875, 0.7265746709709759, 0.7277727576572104, 0.7289686274214116, 0.7301622766207523, 0.7313537016191705, 0.7325428987873788, 0.7337298645028764, 0.7349145951499599, 0.7360970871197343, 0.7372773368101241, 0.7384553406258837, 0.7396310949786097, 0.74080459628675, 0.7419758409756163, 0.7431448254773942, 0.744311546231154, 0.7454759996828623, 0.7466381822853914, 0.7477980904985319, 0.7489557207890021, 0.7501110696304595, 0.7512641335035111, 0.7524149088957244, 0.7535633923016378, 0.754709580222772, 0.7558534691676396, 0.7569950556517564, 0.7581343361976522, 0.7592713073348808, 0.7604059656000309, 0.7615383075367367, 0.7626683296956883, 0.7637960286346421, 0.7649214009184317, 0.7660444431189779, 0.7671651518152995, 0.7682835235935234, 0.7693995550468951, 0.7705132427757893, 0.77162458338772, 0.7727335734973511, 0.7738402097265061, 0.7749444887041796, 0.7760464070665459, 0.7771459614569709, 0.778243148526021, 0.7793379649314741, 0.7804304073383297, 0.7815204724188187, 0.7826081568524139, 0.7836934573258397, 0.7847763705330829, 0.7858568931754019, 0.7869350219613374, 0.7880107536067219, 0.7890840848346907, 0.7901550123756903, 0.79122353296749, 0.7922896433551907, 0.7933533402912352, 0.7944146205354181, 0.7954734808548958, 0.7965299180241963, 0.7975839288252284, 0.7986355100472928, 0.7996846584870905, 0.8007313709487335, 0.801775644243754, 0.8028174751911145, 0.8038568606172174, 0.8048937973559142, 0.8059282822485158, 0.8069603121438019, 0.8079898838980305, 0.8090169943749475, 0.810041640445796, 0.8110638189893266, 0.8120835268918062, 0.8131007610470277, 0.8141155183563192, 0.8151277957285542, 0.8161375900801602, 0.8171448983351285, 0.8181497174250234, 0.8191520442889918, 0.820151875873772, 0.821149209133704, 0.8221440410307373, 0.8231363685344418, 0.8241261886220157, 0.8251134982782952, 0.8260982944957639, 0.8270805742745618, 0.8280603346224944, 0.8290375725550416, 0.8300122850953675, 0.8309844692743282, 0.8319541221304826, 0.8329212407100994, 0.8338858220671681, 0.8348478632634065, 0.8358073613682702, 0.8367643134589617, 0.8377187166204387, 0.838670567945424, 0.8396198645344132, 0.8405666034956842, 0.8415107819453062, 0.8424523970071476, 0.8433914458128856, 0.8443279255020151, 0.8452618332218561, 0.846193166127564, 0.8471219213821372, 0.8480480961564258, 0.8489716876291414, 0.8498926929868639, 0.8508111094240512, 0.8517269341430476, 0.8526401643540922, 0.8535507972753273, 0.8544588301328074, 0.8553642601605067, 0.8562670846003282, 0.8571673007021123, 0.8580649057236446, 0.8589598969306644, 0.8598522715968734, 0.8607420270039435, 0.8616291604415257, 0.8625136692072574, 0.8633955506067716, 0.8642748019537047, 0.8651514205697045, 0.8660254037844386, 0.8668967489356028, 0.8677654533689284, 0.8686315144381913, 0.869494929505219, 0.8703556959398997, 0.8712138111201894, 0.8720692724321206, 0.8729220772698096, 0.8737722230354652, 0.8746197071393957, 0.8754645270000179, 0.8763066800438636, 0.8771461637055887, 0.8779829754279805, 0.8788171126619653, 0.8796485728666165, 0.8804773535091619, 0.8813034520649922, 0.8821268660176678, 0.8829475928589269, 0.8837656300886935, 0.8845809752150839, 0.8853936257544159, 0.8862035792312147, 0.8870108331782217, 0.8878153851364013, 0.8886172326549489, 0.8894163732912975, 0.8902128046111265, 0.8910065241883678, 0.891797529605214, 0.8925858184521255, 0.8933713883278375, 0.8941542368393681, 0.894934361602025, 0.8957117602394129, 0.8964864303834404, 0.8972583696743284, 0.8980275757606155, 0.898794046299167, 0.8995577789551804, 0.9003187714021935, 0.9010770213220917, 0.9018325264051138, 0.9025852843498605, 0.9033352928633008, 0.9040825496607783, 0.9048270524660196, 0.9055687990111395, 0.9063077870366499, 0.9070440142914649, 0.9077774785329086, 0.9085081775267219, 0.9092361090470685, 0.9099612708765432, 0.910683660806177, 0.9114032766354453, 0.912120116172273, 0.9128341772330428, 0.9135454576426009, 0.9142539552342637, 0.9149596678498249, 0.915662593339561, 0.9163627295622396, 0.917060074385124, 0.917754625683981, 0.9184463813430871, 0.9191353392552345, 0.9198214973217376, 0.9205048534524403, 0.9211854055657211, 0.9218631515885005, 0.9225380894562464, 0.9232102171129808, 0.9238795325112867, 0.9245460336123131, 0.9252097183857821, 0.9258705848099947, 0.9265286308718373, 0.9271838545667874, 0.92783625389892, 0.9284858268809135, 0.9291325715340562, 0.9297764858882513, 0.9304175679820246, 0.9310558158625283, 0.9316912275855489, 0.9323238012155122, 0.9329535348254889, 0.9335804264972017, 0.9342044743210295, 0.9348256763960144, 0.9354440308298673, 0.9360595357389733, 0.9366721892483976, 0.9372819894918915, 0.9378889346118976, 0.9384930227595559, 0.9390942520947091, 0.9396926207859083, 0.9402881270104189, 0.9408807689542255, 0.9414705448120378, 0.9420574527872967, 0.9426414910921784, 0.943222657947601, 0.9438009515832294, 0.9443763702374811, 0.9449489121575309, 0.9455185755993167, 0.9460853588275453, 0.9466492601156964, 0.9472102777460288, 0.9477684100095857, 0.9483236552061993, 0.9488760116444965, 0.9494254776419038, 0.9499720515246525, 0.9505157316277837, 0.9510565162951535, 0.9515944038794382, 0.9521293927421386, 0.9526614812535863, 0.953190667792947, 0.9537169507482268, 0.9542403285162768, 0.9547607995027975, 0.9552783621223436, 0.9557930147983301, 0.9563047559630354, 0.9568135840576074, 0.9573194975320672, 0.9578224948453149, 0.9583225744651332, 0.958819734868193, 0.9593139745400575, 0.9598052919751869, 0.9602936856769431, 0.9607791541575941, 0.9612616959383188, 0.9617413095492113, 0.9622179935292854, 0.9626917464264787, 0.9631625667976581, 0.9636304532086231, 0.9640954042341101, 0.9645574184577981, 0.9650164944723114, 0.9654726308792251, 0.9659258262890683, 0.9663760793213293, 0.9668233886044594, 0.9672677527758767, 0.9677091704819711, 0.9681476403781077, 0.9685831611286311, 0.9690157314068695, 0.9694453498951389, 0.9698720152847469, 0.9702957262759965, 0.9707164815781908, 0.971134279909636, 0.9715491199976461, 0.9719610005785463, 0.9723699203976766, 0.9727758782093965, 0.9731788727770883, 0.9735789028731602, 0.9739759672790516, 0.9743700647852352, 0.9747611941912218, 0.9751493543055632, 0.9755345439458565, 0.9759167619387474, 0.9762960071199334, 0.9766722783341679, 0.9770455744352635, 0.9774158942860959, 0.9777832367586061, 0.9781476007338056, 0.9785089851017784, 0.978867388761685, 0.9792228106217657, 0.9795752495993441, 0.9799247046208296, 0.9802711746217219, 0.980614658546613, 0.9809551553491915, 0.9812926639922451, 0.981627183447664, 0.9819587126964436, 0.9822872507286887, 0.9826127965436152, 0.9829353491495543, 0.9832549075639545, 0.9835714708133859, 0.9838850379335417, 0.9841956079692419, 0.9845031799744366, 0.984807753012208, 0.9851093261547739, 0.9854078984834901, 0.9857034690888535, 0.9859960370705049, 0.9862856015372313, 0.9865721616069694, 0.9868557164068072, 0.9871362650729879, 0.9874138067509114, 0.9876883405951377, 0.9879598657693891, 0.9882283814465528, 0.9884938868086836, 0.9887563810470058, 0.9890158633619168, 0.9892723329629883, 0.9895257890689694, 0.989776230907789, 0.9900236577165575, 0.9902680687415704, 0.9905094632383088, 0.9907478404714436, 0.9909831997148363, 0.9912155402515417, 0.9914448613738104, 0.9916711623830904, 0.9918944425900297, 0.9921147013144778, 0.9923319378854887, 0.992546151641322, 0.9927573419294455, 0.9929655081065369, 0.9931706495384861, 0.9933727656003964, 0.9935718556765875, 0.9937679191605964, 0.9939609554551797, 0.9941509639723154, 0.9943379441332046, 0.9945218953682733, 0.9947028171171742, 0.9948807088287882, 0.9950555699612263, 0.9952273999818312, 0.9953961983671789, 0.99556196460308, 0.9957246981845821, 0.9958843986159703, 0.9960410654107695, 0.9961946980917455, 0.9963452961909064, 0.9964928592495044, 0.9966373868180366, 0.9967788784562471, 0.996917333733128, 0.9970527522269202, 0.9971851335251157, 0.9973144772244581, 0.997440782930944, 0.9975640502598242, 0.9976842788356053, 0.99780146829205, 0.997915618272179, 0.9980267284282716, 0.9981347984218669, 0.9982398279237653, 0.9983418166140283, 0.998440764181981, 0.9985366703262117, 0.9986295347545738, 0.9987193571841863, 0.998806137341434, 0.99888987496197, 0.9989705697907146, 0.9990482215818578, 0.9991228300988584, 0.999194395114446, 0.9992629164106211, 0.9993283937786562, 0.9993908270190958, 0.9994502159417572, 0.9995065603657316, 0.999559860119384, 0.9996101150403544, 0.9996573249755573, 0.9997014897811831, 0.9997426093226983, 0.9997806834748455, 0.9998157121216442, 0.9998476951563913, 0.9998766324816606, 0.9999025240093042, 0.999925369660452, 0.9999451693655121, 0.9999619230641713, 0.9999756307053947, 0.9999862922474267, 0.9999939076577904, 0.9999984769132877, 1.0}; /** * Method to compute the sine of an integer angle (in tenth-degrees). * @param angle the angle in tenth-degrees. * @return the sine of that angle. */ public static double sin(int angle) { while (angle < 0) { angle += 3600; } if (angle >= 3600) { angle %= 3600; } if (angle <= 900) { return sineTable[angle]; } if (angle <= 1800) { return sineTable[1800 - angle]; } if (angle <= 2700) { return -sineTable[angle - 1800]; } return -sineTable[3600 - angle]; } /** * Method to compute the cosine of an integer angle (in tenth-degrees). * @param angle the angle in tenth-degrees. * @return the cosine of that angle. */ public static double cos(int angle) { while (angle < 0) { angle += 3600; } if (angle >= 3600) { angle %= 3600; } if (angle <= 900) { return sineTable[900 - angle]; } if (angle <= 1800) { return -sineTable[angle - 900]; } if (angle <= 2700) { return -sineTable[2700 - angle]; } return sineTable[angle - 2700]; } /** * Method to compute the sine of a small integer angle (in tenth-degrees). * @param angle the angle in tenth-degrees in range 0..900. * @return the sine of that angle. */ public static double sinSmall(int angle) { return sineTable[angle]; } /** * Method to compute the cosine of a small integer angle (in tenth-degrees). * @param angle the angle in tenth-degrees in range [0..900]. * @return the cosine of that angle. */ public static double cosSmall(int angle) { return sineTable[900 - angle]; } /** * Returns Cartesian coordinates of a vector specified in polar coordinates. * Result vector has integer components. * Euclidean length of result vector is not less than specified length. * Components of result vector are packed in a long value: * x is in 32 less significant bits, y is in 32 most significant bits. * @param len positive vector length * @param angle the angle in tenth-degrees in range [0..3600). * @return vector packed in a long value. * @see com.sun.electric.util.math.GenMath#getX(long) * @see com.sun.electric.util.math.GenMath#getY(long) */ public static long polarToXY(int len, int angle) { if (len == 0) { return 0; } assert len > 0; int x = 0, y = 0; switch (angle) { case 0: x = len; break; case 900: y = len; break; case 1800: x = -len; break; case 2700: y = -len; break; case 450: x = y = (int) (len * SIN45) + 1; break; case 1350: x = -(y = (int) (len * SIN45) + 1); break; case 2250: x = y = -(int) (len * SIN45) - 1; break; case 3150: y = -(x = (int) (len * SIN45) + 1); break; default: if (angle < 1800) { if (angle < 900) { x = (int) (len * GenMath.cosSmall(angle)) + 1; y = (int) (len * GenMath.sinSmall(angle)) + 1; } else { angle -= 900; x = -(int) (len * GenMath.sinSmall(angle)) - 1; y = (int) (len * GenMath.cosSmall(angle)) + 1; } } else { if (angle < 2700) { angle -= 1800; x = -(int) (len * GenMath.cosSmall(angle)) - 1; y = -(int) (len * GenMath.sinSmall(angle)) - 1; } else { angle -= 2700; x = (int) (len * GenMath.sinSmall(angle)) + 1; y = -(int) (len * GenMath.cosSmall(angle)) - 1; } } } // return packed x and y return packXY(x, y); } /** * Pack a pair of integer coordinates in a long value. * x is packed in a low half, and y is packed in a high half of the long. * Use getX and getY to unpack coordiantes. * @param x x-coordinate * @param y y-coordinate * @return a long value with a packed pair of coordinates. * @see com.sun.electric.util.math.GenMath#getX(long) * @see com.sun.electric.util.math.GenMath#getY(long) */ public static long packXY(int x, int y) { return (x & 0xFFFFFFFFL) | ((long) (y)) << 32; } /** * Returns x coordinate packed in a long value by packXY. * @see com.sun.electric.util.math.GenMath#packXY(int, int) */ public static int getX(long xy) { return (int) xy; } /** * Returns y coordinate packed in a long value by packXY. * @see com.sun.electric.util.math.GenMath#packXY(int, int) */ public static int getY(long xy) { return (int) (xy >> 32); } /** * Method to return a long that represents the unsigned * value of an integer. I.e., the passed int is a set of * bits, and this method returns a number as if those bits * were interpreted as an unsigned int. */ public static long unsignedIntValue(int n) { return n & 0xFFFFFFFFL; } /** * Returns true if specified long value is considered "small int". * Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range. * @param v specified long value. * @return true if specified long value is considered "small int". */ public static boolean isSmallInt(long v) { return ((v - MIN_SMALL_COORD) & Integer.MIN_VALUE) == 0; } /** * Returns true if specified int value is considered "small int". * Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range. * @param v specified int value. * @return true if specified int value is considered "small int". */ public static boolean isSmallInt(int v) { return ((v - MIN_SMALL_COORD) & Integer.MIN_VALUE) == 0; } /** ** Method to return a prime number greater or equal than a give threshold. * It is possible for every "int" threshold because Integer.MAX_VALUE is * a prime number. Prime number is choosen from a table based on table from * Knuth's book. * @param x threshold * @return a prime number */ public static int primeSince(int x) { int i = 0; while (prime[i] < x) { i++; } return prime[i]; } /** * Prime numbers from Knuth's book. **/ private static final int[] prime = { (1 << 2) - 1, (1 << 3) - 1, (1 << 4) - 3, (1 << 5) - 1, (1 << 6) - 3, (1 << 7) - 1, (1 << 8) - 5, (1 << 9) - 3, (1 << 10) - 3, (1 << 11) - 9, (1 << 12) - 3, (1 << 13) - 1, (1 << 14) - 3, (1 << 15) - 19, (1 << 16) - 15, (1 << 17) - 1, (1 << 18) - 5, (1 << 19) - 1, (1 << 20) - 3, (1 << 21) - 9, (1 << 22) - 3, (1 << 23) - 15, (1 << 24) - 3, (1 << 25) - 39, (1 << 26) - 5, (1 << 27) - 39, (1 << 28) - 57, (1 << 29) - 3, (1 << 30) - 35, (1 << 31) - 1 }; /** * Calculate the variance of a given, equal distributed array of doubles. * @param values * @param mean * @return variance */ public static double varianceEqualDistribution(double[] values, double mean) { double var = 0.0; for (int i = 0; i < values.length; i++) { var += Math.pow((double) values[i] - mean, 2.0); } return var / (double) values.length; } /** * Calculate the variance of a given, equal distributed array of doubles. * @param values * @return variance */ public static double varianceEqualDistribution(double[] values) { double mean = GenMath.meanEqualDistribution(values); return varianceEqualDistribution(values, mean); } /** * Calculate the mean of a given, equal distributed array of doubles. * @param values * @return variance */ public static double meanEqualDistribution(double[] values) { double mean = 0.0; for (int i = 0; i < values.length; i++) { mean += values[i]; } return mean / (double) values.length; } /** * Calculate the standard deviation of a given, equal distributed array of doubles. * @param values * @return variance */ public static double standardDeviation(double[] values) { double var = GenMath.varianceEqualDistribution(values); return Math.sqrt(var); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy