com.sun.electric.util.math.GenMath Maven / Gradle / Ivy
/* -*- tab-width: 4 -*-
*
* Electric(tm) VLSI Design System
*
* File: GenMath.java
*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
*
* Electric(tm) is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* Electric(tm) is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Electric(tm); see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, Mass 02111-1307, USA.
*/
package com.sun.electric.util.math;
import java.awt.Point;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.math.RoundingMode;
import java.util.ArrayList;
import java.util.List;
import java.util.StringTokenizer;
/**
* General Math Functions. If you are working in Database Units, you
* should be using DBMath instead.
*/
public class GenMath {
/**
* Minimal integer that is considered "small int".
* Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
*/
public static final int MIN_SMALL_COORD = Integer.MIN_VALUE / 2; // 0xC0000000
/**
* Maximal ineger that is considered "small int".
* Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
*/
public static final int MAX_SMALL_COORD = Integer.MAX_VALUE / 2; // 0x3FFFFFFF
static final double HALF = 0.5 - 0.5 / (1L << 53); // 0x1.fffffffffffffp-2;
/**
* General method to obtain quadrant for a given box in a qTree based on the qTree center.
* Zero-size boxes are assigned to the positive side of the dividing line.
* @param centerX the X center of the qTree.
* @param centerY the Y center of the qTree.
* @param box the given box.
* @return the quadrant number.
*/
public static int getQuadrants(double centerX, double centerY, Rectangle2D box) {
int loc = 0;
if (box.getMinY() < centerY) {
// either 0 or 1 quadtrees
if (box.getMinX() < centerX) {
loc |= 1 << 0;
}
if (box.getMaxX() >= centerX) {
loc |= 1 << 1;
}
}
if (box.getMaxY() >= centerY) {
// the other quadtrees
if (box.getMinX() < centerX) {
loc |= 1 << 2;
}
if (box.getMaxX() >= centerX) {
loc |= 1 << 3;
}
}
return loc;
}
/**
* Calculates the bounding box of a child depending on the location. Parameters are passed to avoid
* extra calculation
* @param x Parent x value
* @param y Parent y value
* @param w Child width (1/4 of parent if qtree)
* @param h Child height (1/2 of parent if qtree)
* @param centerX Parent center x value
* @param centerY Parent center y value
* @param loc Location in qtree
*/
public static Rectangle2D getQTreeBox(double x, double y, double w, double h, double centerX, double centerY, int loc) {
if ((loc >> 0 & 1) == 1) {
x = centerX;
}
if ((loc >> 1 & 1) == 1) {
y = centerY;
}
return (new Rectangle2D.Double(x, y, w, h));
}
/**
* Calculates the bounding box of a child depending on the location.
* @param box the large box
* @param loc Location in qtree
*/
public static FixpRectangle getQTreeBox(AbstractFixpRectangle box, int loc) {
switch (loc) {
case 0:
return FixpRectangle.fromFixpDiagonal(box.getFixpMinX(), box.getFixpMinY(), box.getFixpCenterX(), box.getFixpCenterY());
case 1:
return FixpRectangle.fromFixpDiagonal(box.getFixpCenterX(), box.getFixpMinY(), box.getFixpMaxX(), box.getFixpCenterY());
case 2:
return FixpRectangle.fromFixpDiagonal(box.getFixpMinX(), box.getFixpCenterY(), box.getFixpCenterX(), box.getFixpMaxY());
case 3:
return FixpRectangle.fromFixpDiagonal(box.getFixpCenterX(), box.getFixpCenterY(), box.getFixpMaxX(), box.getFixpMaxY());
}
throw new AssertionError();
}
/********************************************************************************************************
*
*******************************************************************************************************/
/**
* Method to transform an array of doubles into a string that can be stored in a preference.
* The format of the string is "(v1 v2 v3 ...)"
* @param s the values.
* @return string representing the array.
*/
public static String transformArrayIntoString(double[] s) {
StringBuffer sb = new StringBuffer();
for (int i = 0; i < s.length; i++) {
if (i == 0) {
sb.append('(');
} else {
sb.append(' ');
}
sb.append(s[i]);
}
sb.append(')');
String dir = sb.toString();
return dir;
}
/**
* Method to extract an array of doubles from a string.
* The format of the string is "(v1 v2 v3 ...)"
* @param vector the input vector in string form.
* @return the array of values.
*/
public static double[] transformStringIntoArray(String vector) {
StringTokenizer parse = new StringTokenizer(vector, "( )", false);
List valuesFound = new ArrayList();
while (parse.hasMoreTokens()) {
String value = parse.nextToken();
try {
valuesFound.add(new Double(Double.parseDouble(value)));
} catch (Exception e) {
e.printStackTrace();
}
}
double[] values = new double[valuesFound.size()];
for (int i = 0; i < valuesFound.size(); i++) {
values[i] = valuesFound.get(i).doubleValue();
}
return values;
}
/**
* Method to compare two objects for equality.
* This does more than a simple "equal" because they may have the same value
* but have diffent type (one Float, the other Double).
* It also considers floating point values equal if they are "close".
* @param first the first object to compare.
* @param second the second object to compare.
* @return true if they are equal.
*/
public static boolean objectsReallyEqual(Object first, Object second) {
// a simple test
if (first.equals(second)) {
return true;
}
// better comparison of numbers (because one may be Float and the other Double)
boolean firstNumeric = false, secondNumeric = false;
double firstValue = 0, secondValue = 0;
if (first instanceof Float) {
firstNumeric = true;
firstValue = ((Float) first).floatValue();
} else if (first instanceof Double) {
firstNumeric = true;
firstValue = ((Double) first).doubleValue();
} else if (first instanceof Integer) {
firstNumeric = true;
firstValue = ((Integer) first).intValue();
}
if (second instanceof Float) {
secondNumeric = true;
secondValue = ((Float) second).floatValue();
} else if (second instanceof Double) {
secondNumeric = true;
secondValue = ((Double) second).doubleValue();
} else if (second instanceof Integer) {
secondNumeric = true;
secondValue = ((Integer) second).intValue();
}
if (firstNumeric && secondNumeric) {
return doublesEqual(firstValue, secondValue, 1.0e-6);
// if (firstValue == secondValue) return true;
}
if (firstNumeric && second instanceof Boolean) {
return ((Boolean) second).booleanValue() == (firstValue != 0);
}
if (secondNumeric && first instanceof Boolean) {
return ((Boolean) first).booleanValue() == (secondValue != 0);
}
return false;
}
/** A transformation matrix that does nothing (identity). */
public static final FixpTransform MATID = new FixpTransform();
/**
* Method to detect if rotation represents a 90 degree rotation in Electric
* @param rotation the rotation amount.
* @return true if it is a 90-degree rotation.
*/
public static boolean isNinetyDegreeRotation(int rotation) {
return rotation == 900 || rotation == 2700;
}
/**
* Method to return the angle between two points.
* @param end1 the first point.
* @param end2 the second point.
* @return the angle between the points (in tenth-degrees).
*/
public static int figureAngle(Point2D end1, Point2D end2) {
return figureAngle(end2.getX() - end1.getX(), end2.getY() - end1.getY());
}
/**
* Method to return the angle of a vector.
* Return 0 if vector is zero or has NaN components.
* @param x x-coordinate of a vector.
* @param y y-coordinate of a vector.
* @return the angle of a vector.
*/
public static int figureAngle(double x, double y) {
int ang = 0;
if (x == 0) {
return y > 0 ? 900 : y < 0 ? 2700 : 0;
}
if (y == 0) {
return x < 0 ? 1800 : 0;
}
if (y < 0) {
x = -x;
y = -y;
ang = 1800;
} else if (!(y > 0)) {
return 0;
}
if (x < 0) {
double t = x;
x = y;
y = -t;
ang += 900;
} else if (!(x > 0)) {
return 0;
}
assert x > 0 && y > 0;
if (x == y) {
return ang + 450;
}
ang += (int) (y < x ? 0.5 + Math.atan(y / x) * (1800 / Math.PI) : 900.5 - Math.atan(x / y) * (1800 / Math.PI));
if (ang >= 3600) {
ang -= 3600;
}
return ang;
}
/**
* Method to return the angle between two points.
* @param end1 the first point.
* @param end2 the second point.
* @return the angle between the points (in radians).
*/
public static double figureAngleRadians(Point2D end1, Point2D end2) {
double dx = end2.getX() - end1.getX();
double dy = end2.getY() - end1.getY();
if (dx == 0.0 && dy == 0.0) {
System.out.println("Warning: domain violation while figuring angle in radians");
return 0;
}
double ang = Math.atan2(dy, dx);
if (ang < 0.0) {
ang += Math.PI * 2.0;
}
return ang;
}
/**
* Method to compute the area of a given rectangle.
* @param rect the rectangle
* @return the area of the rectangle
*/
public static double getArea(Rectangle2D rect) {
return rect.getWidth() * rect.getHeight();
}
/**
* Method to compute the area of a polygon defined by an array of points.
* Returns always positive numbers
* @param points the array of points.
* @return the area of the polygon defined by these points.
*/
public static double getAreaOfPoints(Point2D[] points) {
double area = 0.0;
double x0 = points[0].getX();
double y0 = points[0].getY();
double y1 = 0;
for (int i = 1; i < points.length; i++) {
if (points[i] == null) {
continue; // it could be a complex node from GDS import
}
double x1 = points[i].getX();
y1 = points[i].getY();
// triangulate around the polygon
double p1 = x1 - x0;
double p2 = y0 + y1;
double partial = p1 * p2;
area += partial / 2.0;
x0 = x1;
y0 = y1;
}
double p1 = points[0].getX() - x0;
double p2 = points[0].getY() + y1;
double partial = p1 * p2;
area += partial / 2.0;
return Math.abs(area);
}
/**
* Method to return the sum of two points.
* @param p the first point.
* @param dx the X component of the second point
* @param dy the T component of the second point
* @return the sum of two points.
*/
public static Point2D addPoints(Point2D p, double dx, double dy) {
return new Point2D.Double(p.getX() + dx, p.getY() + dy);
}
/**
* Method to tell whether a point is on a given line segment.
* NOTE: If you are comparing Electric database units, DO NOT
* use this method. Use the corresponding method from DBMath.
* @param end1 the first end of the line segment.
* @param end2 the second end of the line segment.
* @param pt the point in question.
* @return true if the point is on the line segment.
*/
public static boolean isOnLine(Point2D end1, Point2D end2, Point2D pt) {
// trivial rejection if point not in the bounding box of the line
if (pt.getX() < Math.min(end1.getX(), end2.getX())) {
return false;
}
if (pt.getX() > Math.max(end1.getX(), end2.getX())) {
return false;
}
if (pt.getY() < Math.min(end1.getY(), end2.getY())) {
return false;
}
if (pt.getY() > Math.max(end1.getY(), end2.getY())) {
return false;
}
// handle manhattan cases specially
if (end1.getX() == end2.getX()) {
if (pt.getX() == end1.getX()) {
return true;
}
return false;
}
if (end1.getY() == end2.getY()) {
if (pt.getY() == end1.getY()) {
return true;
}
return false;
}
// handle nonmanhattan
if ((pt.getX() - end1.getX()) * (end2.getY() - end1.getY()) == (pt.getY() - end1.getY()) * (end2.getX() - end1.getX())) {
return true;
}
return false;
}
/**
* Method to find the point on a line segment that is closest to a given point.
* @param p1 one end of the line segment.
* @param p2 the other end of the line segment.
* @param pt the point near the line segment.
* @return a point on the line segment that is closest to "pt".
* The point is guaranteed to be between the two points that define the segment.
*/
public static Point2D closestPointToSegment(Point2D p1, Point2D p2, Point2D pt) {
if (p1 instanceof AbstractFixpPoint&& p2 instanceof AbstractFixpPoint && pt instanceof AbstractFixpPoint) {
return closestPointToSegment((AbstractFixpPoint)p1, (AbstractFixpPoint)p2, (AbstractFixpPoint)pt);
}
// find closest point on line
Point2D pi = closestPointToLine(p1, p2, pt);
// see if that intersection point is actually on the segment
if (pi.getX() >= Math.min(p1.getX(), p2.getX())
&& pi.getX() <= Math.max(p1.getX(), p2.getX())
&& pi.getY() >= Math.min(p1.getY(), p2.getY())
&& pi.getY() <= Math.max(p1.getY(), p2.getY())) {
// it is
return pi;
}
// intersection not on segment: choose one endpoint as the closest
double dist1 = pt.distance(p1);
double dist2 = pt.distance(p2);
if (dist2 < dist1) {
return p2;
}
return p1;
}
/**
* Method to find the point on a line segment that is closest to a given point.
* @param p1 one end of the line segment.
* @param p2 the other end of the line segment.
* @param pt the point near the line segment.
* @return a point on the line segment that is closest to "pt".
* The point is guaranteed to be between the two points that define the segment.
*/
public static AbstractFixpPoint closestPointToSegment(AbstractFixpPoint p1, AbstractFixpPoint p2, AbstractFixpPoint pt) {
// special case for horizontal line
if (p1.getFixpY() == p2.getFixpY()) {
long x1 = p1.getFixpX();
long x2 = p2.getFixpX();
long x = pt.getFixpX();
if (x1 <= x2) {
if (x <= x1) {
return p1;
} else if (x >= x2) {
return p2;
}
} else {
if (x >= x1) {
return p1;
} else if (x <= x2) {
return p2;
}
}
return pt.create(x, p1.getFixpY());
}
// special case for vertical line
if (p1.getFixpX() == p2.getFixpX()) {
long y1 = p1.getFixpY();
long y2 = p2.getFixpY();
long y = pt.getFixpY();
if (y1 <= y2) {
if (y <= y1) {
return p1;
} else if (y >= y2) {
return p2;
}
} else {
if (y >= y1) {
return p1;
} else if (y <= y2) {
return p2;
}
}
return pt.create(p1.getFixpX(), y);
}
// find closest point on line
AbstractFixpPoint pi = closestPointToLine(p1, p2, pt);
// see if that intersection point is actually on the segment
if (pi.getFixpX() >= Math.min(p1.getFixpX(), p2.getFixpX())
&& pi.getFixpX() <= Math.max(p1.getFixpX(), p2.getFixpX())
&& pi.getFixpY() >= Math.min(p1.getFixpY(), p2.getFixpY())
&& pi.getFixpY() <= Math.max(p1.getFixpY(), p2.getFixpY())) {
// it is
return pi;
}
// intersection not on segment: choose one endpoint as the closest
double dist1 = pt.distance(p1);
double dist2 = pt.distance(p2);
if (dist2 < dist1) {
return p2;
}
return p1;
}
/**
* Method to find the point on a line that is closest to a given point.
* @param p1 one end of the line.
* @param p2 the other end of the line.
* @param pt the point near the line.
* @return a point on the line that is closest to "pt".
* The point is not guaranteed to be between the two points that define the line.
*/
public static Point2D closestPointToLine(Point2D p1, Point2D p2, Point2D pt) {
if (p1 instanceof AbstractFixpPoint&& p2 instanceof AbstractFixpPoint && pt instanceof AbstractFixpPoint) {
return closestPointToLine((AbstractFixpPoint)p1, (AbstractFixpPoint)p2, (AbstractFixpPoint)pt);
}
// special case for horizontal line
if (p1.getY() == p2.getY()) {
return new Point2D.Double(pt.getX(), p1.getY());
}
// special case for vertical line
if (p1.getX() == p2.getX()) {
return new Point2D.Double(p1.getX(), pt.getY());
}
// compute equation of the line
double m = (p1.getY() - p2.getY()) / (p1.getX() - p2.getX());
double b = -p1.getX() * m + p1.getY();
// compute perpendicular to line through the point
double mi = -1.0 / m;
double bi = -pt.getX() * mi + pt.getY();
// compute intersection of the lines
double t = (bi - b) / (m - mi);
return new Point2D.Double(t, m * t + b);
}
/**
* Method to find the point on a line that is closest to a given point.
* @param p1 one end of the line.
* @param p2 the other end of the line.
* @param pt the point near the line.
* @return a point on the line that is closest to "pt".
* The point is not guaranteed to be between the two points that define the line.
*/
public static AbstractFixpPoint closestPointToLine(AbstractFixpPoint p1, AbstractFixpPoint p2, AbstractFixpPoint pt) {
// special case for horizontal line
if (p1.getFixpY() == p2.getFixpY()) {
return pt.create(pt.getFixpX(), p1.getFixpY());
}
// special case for vertical line
if (p1.getFixpX() == p2.getFixpX()) {
return pt.create(p1.getFixpX(), pt.getFixpY());
}
// compute equation of the line
double m = (p1.getFixpY() - p2.getFixpY()) / (double)(p1.getFixpX() - p2.getFixpX());
double b = -p1.getFixpX() * m + p1.getFixpY();
// compute perpendicular to line through the point
double mi = -1.0 / m;
double bi = -pt.getFixpX() * mi + pt.getFixpY();
// compute intersection of the lines
double t = (bi - b) / (m - mi);
return pt.create(Math.round(t), Math.round(m * t + b));
}
/**
* Method to determine whether an arc at angle "ang" can connect the two ports
* whose bounding boxes are "lx1<=X<=hx1" and "ly1<=Y<=hy1" for port 1 and
* "lx2<=X<=hx2" and "ly2<=Y<=hy2" for port 2. Returns true if a line can
* be drawn at that angle between the two ports and returns connection points
* in (x1,y1) and (x2,y2)
*/
public static Point2D[] arcconnects(int ang, Rectangle2D bounds1, Rectangle2D bounds2) {
// first try simple solutions
Point2D[] points = new Point2D[2];
double lx1 = bounds1.getMinX(), hx1 = bounds1.getMaxX();
double ly1 = bounds1.getMinY(), hy1 = bounds1.getMaxY();
double lx2 = bounds2.getMinX(), hx2 = bounds2.getMaxX();
double ly2 = bounds2.getMinY(), hy2 = bounds2.getMaxY();
if ((ang % 1800) == 0) {
// horizontal angle: simply test Y coordinates
if (ly1 > hy2 || ly2 > hy1) {
return null;
}
double y = (Math.max(ly1, ly2) + Math.min(hy1, hy2)) / 2;
points[0] = new Point2D.Double((lx1 + hx1) / 2, y);
points[1] = new Point2D.Double((lx2 + hx2) / 2, y);
return points;
}
if ((ang % 1800) == 900) {
// vertical angle: simply test X coordinates
if (lx1 > hx2 || lx2 > hx1) {
return null;
}
double x = (Math.max(lx1, lx2) + Math.min(hx1, hx2)) / 2;
points[0] = new Point2D.Double(x, (ly1 + hy1) / 2);
points[1] = new Point2D.Double(x, (ly2 + hy2) / 2);
return points;
}
// construct an imaginary line at the proper angle that runs through (0,0)
double a = GenMath.sin(ang) / 1073741824.0;
double b = -GenMath.cos(ang) / 1073741824.0;
// get the range of distances from the line to port 1
double lx = lx1;
double hx = hx1;
double ly = ly1;
double hy = hy1;
double d = lx * a + ly * b;
double low1 = d;
double high1 = d;
d = hx * a + ly * b;
if (d < low1) {
low1 = d;
}
if (d > high1) {
high1 = d;
}
d = hx * a + hy * b;
if (d < low1) {
low1 = d;
}
if (d > high1) {
high1 = d;
}
d = lx * a + hy * b;
if (d < low1) {
low1 = d;
}
if (d > high1) {
high1 = d;
}
// get the range of distances from the line to port 2
lx = lx2;
hx = hx2;
ly = ly2;
hy = hy2;
d = lx * a + ly * b;
double low2 = d;
double high2 = d;
d = hx * a + ly * b;
if (d < low2) {
low2 = d;
}
if (d > high2) {
high2 = d;
}
d = hx * a + hy * b;
if (d < low2) {
low2 = d;
}
if (d > high2) {
high2 = d;
}
d = lx * a + hy * b;
if (d < low2) {
low2 = d;
}
if (d > high2) {
high2 = d;
}
// if the ranges do not overlap, a line cannot be drawn
if (low1 > high2 || low2 > high1) {
return null;
}
// the line can be drawn: determine equation (aX + bY = d)
d = ((low1 > low2 ? low1 : low2) + (high1 < high2 ? high1 : high2)) / 2.0f;
// determine intersection with polygon 1
points[0] = db_findconnectionpoint(lx1, hx1, ly1, hy1, a, b, d);
points[0] = db_findconnectionpoint(lx2, hx2, ly2, hy2, a, b, d);
return points;
}
/**
* Method to find a point inside the rectangle bounded by (lx<=X<=hx, ly<=Y<=hy)
* that satisfies the equation aX + bY = d. Returns the point in (x,y).
*/
private static Point2D db_findconnectionpoint(double lx, double hx, double ly, double hy, double a, double b, double d) {
if (a != 0.0) {
double out = (d - b * ly) / a;
if (out >= lx && out <= hx) {
return new Point2D.Double(out, ly);
}
out = (d - b * hy) / a;
if (out >= lx && out <= hx) {
return new Point2D.Double(out, hy);
}
}
if (b != 0.0) {
double out = (d - b * lx) / a;
if (out >= ly && out <= hy) {
return new Point2D.Double(lx, out);
}
out = (d - b * hx) / a;
if (out >= ly && out <= hy) {
return new Point2D.Double(hx, out);
}
}
// not the right solution, but nothing else works
return new Point2D.Double((lx + hx) / 2, (ly + hy) / 2);
}
/**
* Method to calcute Euclidean distance between two points.
* @param p1 the first point.
* @param p2 the second point.
* @return the distance between the points.
*/
public static double distBetweenPoints(Point2D p1, Point2D p2) {
double deltaX = p1.getX() - p2.getX();
double deltaY = p1.getY() - p2.getY();
return (Math.hypot(deltaX, deltaY));
}
/**
* Method to compute the distance between point (x,y) and the line that runs
* from (x1,y1) to (x2,y2).
*/
public static double distToLine(Point2D l1, Point2D l2, Point2D pt) {
// get point on line from (x1,y1) to (x2,y2) close to (x,y)
double x1 = l1.getX();
double y1 = l1.getY();
double x2 = l2.getX();
double y2 = l2.getY();
if (doublesEqual(x1, x2) && doublesEqual(y1, y2)) {
return pt.distance(l1);
}
int ang = figureAngle(l1, l2);
Point2D iPt = intersect(l1, ang, pt, ang + 900);
double iX = iPt.getX();
double iY = iPt.getY();
if (doublesEqual(x1, x2)) {
iX = x1;
}
if (doublesEqual(y1, y2)) {
iY = y1;
}
// make sure (ix,iy) is on the segment from (x1,y1) to (x2,y2)
if (iX < Math.min(x1, x2) || iX > Math.max(x1, x2)
|| iY < Math.min(y1, y2) || iY > Math.max(y1, y2)) {
if (Math.abs(iX - x1) + Math.abs(iY - y1) < Math.abs(iX - x2) + Math.abs(iY - y2)) {
iX = x1;
iY = y1;
} else {
iX = x2;
iY = y2;
}
}
iPt.setLocation(iX, iY);
return iPt.distance(pt);
}
/**
* Method used by "ioedifo.c" and "routmaze.c".
*/
public static Point2D computeArcCenter(Point2D c, Point2D p1, Point2D p2) {
// reconstruct angles to p1 and p2
double radius = p1.distance(c);
double a1 = calculateAngle(radius, p1.getX() - c.getX(), p1.getY() - c.getY());
double a2 = calculateAngle(radius, p2.getX() - c.getX(), p1.getY() - c.getY());
if (a1 < a2) {
a1 += 3600;
}
double a = (a1 + a2) / 2;
double theta = a * Math.PI / 1800.0; /* in radians */
return new Point2D.Double(c.getX() + radius * Math.cos(theta), c.getY() + radius * Math.sin(theta));
}
private static double calculateAngle(double r, double dx, double dy) {
double ratio, a1, a2;
ratio = 1800.0 / Math.PI;
a1 = Math.acos(dx / r) * ratio;
a2 = Math.asin(dy / r) * ratio;
if (a2 < 0.0) {
return 3600.0 - a1;
}
return a1;
}
/**
* Method to find the two possible centers for a circle given a radius and two edge points.
* @param r the radius of the circle.
* @param p1 one point on the edge of the circle.
* @param p2 the other point on the edge of the circle.
* @return an array of two Point2Ds, either of which could be the center.
* Returns null if there are no possible centers.
* This code was written by John Mohammed of Schlumberger.
*/
public static Point2D[] findCenters(double r, Point2D p1, Point2D p2) {
// quit now if the circles concentric
if (p1.getX() == p2.getX() && p1.getY() == p2.getY()) {
return null;
}
// find the intersections, if any
double d = p1.distance(p2);
double r2 = r * r;
double delta_1 = -d / 2.0;
double delta_12 = delta_1 * delta_1;
// quit if there are no intersections
if (r2 < delta_12) {
return null;
}
// compute the intersection points
double delta_2 = Math.sqrt(r2 - delta_12);
double x1 = p2.getX() + ((delta_1 * (p2.getX() - p1.getX())) + (delta_2 * (p2.getY() - p1.getY()))) / d;
double y1 = p2.getY() + ((delta_1 * (p2.getY() - p1.getY())) + (delta_2 * (p1.getX() - p2.getX()))) / d;
double x2 = p2.getX() + ((delta_1 * (p2.getX() - p1.getX())) + (delta_2 * (p1.getY() - p2.getY()))) / d;
double y2 = p2.getY() + ((delta_1 * (p2.getY() - p1.getY())) + (delta_2 * (p2.getX() - p1.getX()))) / d;
Point2D[] retArray = new Point2D[2];
retArray[0] = new Point2D.Double(x1, y1);
retArray[1] = new Point2D.Double(x2, y2);
return retArray;
}
/**
* Method to determine the intersection of two lines and return that point.
* @param p1 a point on the first line.
* @param ang1 the angle of the first line (in tenth degrees).
* @param p2 a point on the second line.
* @param ang2 the angle of the second line (in tenth degrees).
* @return a point that is the intersection of the lines.
* Returns null if there is no intersection point.
*/
public static Point2D intersect(Point2D p1, int ang1, Point2D p2, int ang2) {
// cannot handle lines if they are at the same angle
while (ang1 < 0) {
ang1 += 3600;
}
if (ang1 >= 3600) {
ang1 %= 3600;
}
while (ang2 < 0) {
ang2 += 3600;
}
if (ang2 >= 3600) {
ang2 %= 3600;
}
if (ang1 == ang2) {
return null;
}
// also cannot handle lines that are off by 180 degrees
int amin = ang2, amax = ang1;
if (ang1 < ang2) {
amin = ang1;
amax = ang2;
}
if (amin + 1800 == amax) {
return null;
}
double fa1 = sin(ang1);
double fb1 = -cos(ang1);
double fc1 = -fa1 * p1.getX() - fb1 * p1.getY();
double fa2 = sin(ang2);
double fb2 = -cos(ang2);
double fc2 = -fa2 * p2.getX() - fb2 * p2.getY();
if (Math.abs(fa1) < Math.abs(fa2)) {
double fswap = fa1;
fa1 = fa2;
fa2 = fswap;
fswap = fb1;
fb1 = fb2;
fb2 = fswap;
fswap = fc1;
fc1 = fc2;
fc2 = fswap;
}
double fy = (fa2 * fc1 / fa1 - fc2) / (fb2 - fa2 * fb1 / fa1);
return new Point2D.Double((-fb1 * fy - fc1) / fa1, fy);
}
/**
* Method to determine the intersection of two lines and return that point.
* @param p1 a point on the first line.
* @param ang1 the angle of the first line (in radians).
* @param p2 a point on the second line.
* @param ang2 the angle of the second line (in radians).
* @return a point that is the intersection of the lines.
* Returns null if there is no intersection point.
*/
public static Point2D intersectRadians(Point2D p1, double ang1, Point2D p2, double ang2) {
// cannot handle lines if they are at the same angle
while (ang1 > Math.PI) {
ang1 -= Math.PI;
}
while (ang1 < 0) {
ang1 += Math.PI;
}
while (ang2 > Math.PI) {
ang2 -= Math.PI;
}
while (ang2 < 0) {
ang2 += Math.PI;
}
if (doublesClose(ang1, ang2)) {
return null;
}
// also at the same angle if off by 180 degrees
double fMin = ang2, fMax = ang2;
if (ang1 < ang2) {
fMin = ang1;
fMax = ang2;
}
if (doublesClose(fMin + Math.PI, fMax)) {
return null;
}
double fa1 = Math.sin(ang1);
double fb1 = -Math.cos(ang1);
double fc1 = -fa1 * p1.getX() - fb1 * p1.getY();
double fa2 = Math.sin(ang2);
double fb2 = -Math.cos(ang2);
double fc2 = -fa2 * p2.getX() - fb2 * p2.getY();
if (Math.abs(fa1) < Math.abs(fa2)) {
double fswap = fa1;
fa1 = fa2;
fa2 = fswap;
fswap = fb1;
fb1 = fb2;
fb2 = fswap;
fswap = fc1;
fc1 = fc2;
fc2 = fswap;
}
double fy = (fa2 * fc1 / fa1 - fc2) / (fb2 - fa2 * fb1 / fa1);
return new Point2D.Double((-fb1 * fy - fc1) / fa1, fy);
}
/**
* Method to compute the bounding box of the arc that runs clockwise from
* "s" to "e" and is centered at "c". The bounding box is returned.
*/
public static Rectangle2D arcBBox(Point2D s, Point2D e, Point2D c) {
// determine radius and compute bounds of full circle
double radius = c.distance(s);
double lx = c.getX() - radius;
double ly = c.getY() - radius;
double hx = c.getX() + radius;
double hy = c.getY() + radius;
// compute quadrant of two endpoints
double x1 = s.getX() - c.getX();
double x2 = e.getX() - c.getX();
double y1 = s.getY() - c.getY();
double y2 = e.getY() - c.getY();
int q1 = db_quadrant(x1, y1);
int q2 = db_quadrant(x2, y2);
// see if the two endpoints are in the same quadrant
if (q1 == q2) {
// if the arc runs a full circle, use the MBR of the circle
if (q1 == 1 || q1 == 2) {
if (x1 > x2) {
return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly);
};
} else {
if (x1 < x2) {
return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly);
};
}
// use the MBR of the two arc points
lx = Math.min(s.getX(), e.getX());
hx = Math.max(s.getX(), e.getX());
ly = Math.min(s.getY(), e.getY());
hy = Math.max(s.getY(), e.getY());
return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly);
}
switch (q1) {
case 1:
switch (q2) {
case 2: // 3 quadrants clockwise from Q1 to Q2
hy = Math.max(y1, y2) + c.getY();
break;
case 3: // 2 quadrants clockwise from Q1 to Q3
lx = x2 + c.getX();
hy = y1 + c.getY();
break;
case 4: // 1 quadrant clockwise from Q1 to Q4
lx = Math.min(x1, x2) + c.getX();
ly = y2 + c.getY();
hy = y1 + c.getY();
break;
}
break;
case 2:
switch (q2) {
case 1: // 1 quadrant clockwise from Q2 to Q1
lx = x1 + c.getX();
ly = Math.min(y1, y2) + c.getY();
hx = x2 + c.getX();
break;
case 3: // 3 quadrants clockwise from Q2 to Q3
lx = Math.min(x1, x2) + c.getX();
break;
case 4: // 2 quadrants clockwise from Q2 to Q4
lx = x1 + c.getX();
ly = y2 + c.getY();
break;
}
break;
case 3:
switch (q2) {
case 1: // 2 quadrants clockwise from Q3 to Q1
ly = y1 + c.getY();
hx = x2 + c.getX();
break;
case 2: // 1 quadrant clockwise from Q3 to Q2
ly = y1 + c.getY();
hx = Math.max(x1, x2) + c.getX();
hy = y2 + c.getY();
break;
case 4: // 3 quadrants clockwise from Q3 to Q4
ly = Math.min(y1, y2) + c.getY();
break;
}
break;
case 4:
switch (q2) {
case 1: // 3 quadrants clockwise from Q4 to Q1
hx = Math.max(x1, x2) + c.getX();
break;
case 2: // 2 quadrants clockwise from Q4 to Q2
hx = x1 + c.getX();
hy = y2 + c.getY();
break;
case 3: // 1 quadrant clockwise from Q4 to Q3
lx = x2 + c.getX();
hx = x1 + c.getX();
hy = Math.max(y1, y2) + c.getY();
break;
}
break;
}
return new Rectangle2D.Double(lx, ly, hx - lx, hy - ly);
}
/**
* compute the quadrant of the point x,y 2 | 1
* Standard quadrants are used: -----
* 3 | 4
*/
private static int db_quadrant(double x, double y) {
if (x > 0) {
if (y >= 0) {
return 1;
}
return 4;
}
if (y > 0) {
return 2;
}
return 3;
}
/**
* Method to find the two possible centers for a circle whose radius is
* "r" and has two points (x01,y01) and (x02,y02) on the edge. The two
* center points are returned in (x1,y1) and (x2,y2). The distance between
* the points (x01,y01) and (x02,y02) is in "d". The routine returns
* false if successful, true if there is no intersection. This code
* was written by John Mohammed of Schlumberger.
*/
public static Point2D[] findCenters(double r, double x01, double y01, double x02, double y02, double d) {
/* quit now if the circles concentric */
if (x01 == x02 && y01 == y02) {
return null;
}
/* find the intersections, if any */
double r2 = r * r;
double delta_1 = -d / 2.0;
double delta_12 = delta_1 * delta_1;
/* quit if there are no intersections */
if (r2 < delta_12) {
return null;
}
/* compute the intersection points */
double delta_2 = Math.sqrt(r2 - delta_12);
Point2D[] points = new Point2D[2];
double x1 = x02 + ((delta_1 * (x02 - x01)) + (delta_2 * (y02 - y01))) / d;
double y1 = y02 + ((delta_1 * (y02 - y01)) + (delta_2 * (x01 - x02))) / d;
double x2 = x02 + ((delta_1 * (x02 - x01)) + (delta_2 * (y01 - y02))) / d;
double y2 = y02 + ((delta_1 * (y02 - y01)) + (delta_2 * (x02 - x01))) / d;
points[0] = new Point2D.Double(x1, y1);
points[1] = new Point2D.Double(x2, y2);
return points;
}
/**
* Small epsilon value.
* set so that 1+DBL_EPSILON != 1
*/
private static double DBL_EPSILON = 2.2204460492503131e-016;
/**
* Method to round a value to the nearest increment.
* @param a the value to round.
* @param nearest the increment to which it should be rounded.
* @return the value, rounded to the nearest increment.
* For example:
* toNearest(10.3, 1.0) = 10.0
* toNearest(10.3, 0.1) = 10.3
* toNearest(10.3, 0.5) = 10.5
*/
public static double toNearest(double a, double nearest) {
long v = Math.round(a / nearest);
return v * nearest;
}
/**
* Method to compare two double-precision numbers within an acceptable epsilon.
* @param a the first number.
* @param b the second number.
* @return true if the numbers are equal to 16 decimal places.
*/
public static boolean doublesEqual(double a, double b) {
return doublesEqual(a, b, DBL_EPSILON);
}
/**
* Method to compare two double-precision numbers within a given epsilon
* @param a the first number.
* @param b the second number.
* @param myEpsilon the given epsilon
* @return true if the values are close.
*/
public static boolean doublesEqual(double a, double b, double myEpsilon) {
return (Math.abs(a - b) <= myEpsilon);
}
/**
* Method to compare two numbers and see if one is less than the other within an acceptable epsilon.
* @param a the first number.
* @param b the second number.
* @return true if "a" is less than "b" to 16 decimal places.
*/
public static boolean doublesLessThan(double a, double b) {
if (a + DBL_EPSILON < b) {
return true;
}
return false;
}
/**
* Method to compare two double-precision numbers within an approximate epsilon.
*
NOTE: If you are comparing Electric database units, DO NOT
* use this method. Use the corresponding method from DBMath.
* @param a the first number.
* @param b the second number.
* @return true if the numbers are approximately equal (to a few decimal places).
*/
public static boolean doublesClose(double a, double b) {
if (b != 0) {
double ratio = a / b;
if (ratio < 1.00001 && ratio > 0.99999) {
return true;
}
}
if (Math.abs(a - b) < 0.001) {
return true;
}
return false;
}
// /**
// * Method to round floating-point values to sensible quantities.
// * Rounds these numbers to the nearest thousandth.
// * @param a the value to round.
// * @return the rounded value.
// */
// public static double smooth(double a)
// {
// long i = Math.round(a * 1000.0);
// return i / 1000.0;
// }
// ************************************* CLIPPING *************************************
private static final int LEFT = 1;
private static final int RIGHT = 2;
private static final int BOTTOM = 4;
private static final int TOP = 8;
/**
* Method to clip a line against a rectangle (in double-precision).
* @param from one end of the line.
* @param to the other end of the line.
* @param lX the low X bound of the clip.
* @param hX the high X bound of the clip.
* @param lY the low Y bound of the clip.
* @param hY the high Y bound of the clip.
* The points are modified to fit inside of the clip area.
* @return true if the line is not visible.
*/
public static boolean clipLine(Point2D from, Point2D to, double lX, double hX, double lY, double hY) {
for (;;) {
// compute code bits for "from" point
int fc = 0;
if (from.getX() < lX) {
fc |= LEFT;
} else if (from.getX() > hX) {
fc |= RIGHT;
}
if (from.getY() < lY) {
fc |= BOTTOM;
} else if (from.getY() > hY) {
fc |= TOP;
}
// compute code bits for "to" point
int tc = 0;
if (to.getX() < lX) {
tc |= LEFT;
} else if (to.getX() > hX) {
tc |= RIGHT;
}
if (to.getY() < lY) {
tc |= BOTTOM;
} else if (to.getY() > hY) {
tc |= TOP;
}
// look for trivial acceptance or rejection
if (fc == 0 && tc == 0) {
return false;
}
if (fc == tc || (fc & tc) != 0) {
return true;
}
// make sure the "from" side needs clipping
if (fc == 0) {
double x = from.getX();
double y = from.getY();
from.setLocation(to);
to.setLocation(x, y);
int t = fc;
fc = tc;
tc = t;
}
if ((fc & LEFT) != 0) {
if (to.getX() == from.getX()) {
return true;
}
double t = (to.getY() - from.getY()) * (lX - from.getX()) / (to.getX() - from.getX());
from.setLocation(lX, from.getY() + t);
}
if ((fc & RIGHT) != 0) {
if (to.getX() == from.getX()) {
return true;
}
double t = (to.getY() - from.getY()) * (hX - from.getX()) / (to.getX() - from.getX());
from.setLocation(hX, from.getY() + t);
}
if ((fc & BOTTOM) != 0) {
if (to.getY() == from.getY()) {
return true;
}
double t = (to.getX() - from.getX()) * (lY - from.getY()) / (to.getY() - from.getY());
from.setLocation(from.getX() + t, lY);
}
if ((fc & TOP) != 0) {
if (to.getY() == from.getY()) {
return true;
}
double t = (to.getX() - from.getX()) * (hY - from.getY()) / (to.getY() - from.getY());
from.setLocation(from.getX() + t, hY);
}
}
}
/**
* Method to clip a line against a rectangle (in integer).
* @param from one end of the line.
* @param to the other end of the line.
* @param lx the low X bound of the clip.
* @param hx the high X bound of the clip.
* @param ly the low Y bound of the clip.
* @param hy the high Y bound of the clip.
* The points are modified to fit inside of the clip area.
* @return true if the line is not visible.
*/
public static boolean clipLine(Point from, Point to, int lx, int hx, int ly, int hy) {
for (;;) {
// compute code bits for "from" point
int fc = 0;
if (from.x < lx) {
fc |= LEFT;
} else if (from.x > hx) {
fc |= RIGHT;
}
if (from.y < ly) {
fc |= BOTTOM;
} else if (from.y > hy) {
fc |= TOP;
}
// compute code bits for "to" point
int tc = 0;
if (to.x < lx) {
tc |= LEFT;
} else if (to.x > hx) {
tc |= RIGHT;
}
if (to.y < ly) {
tc |= BOTTOM;
} else if (to.y > hy) {
tc |= TOP;
}
// look for trivial acceptance or rejection
if (fc == 0 && tc == 0) {
return false;
}
if (fc == tc || (fc & tc) != 0) {
return true;
}
// make sure the "from" side needs clipping
if (fc == 0) {
int t = from.x;
from.x = to.x;
to.x = t;
t = from.y;
from.y = to.y;
to.y = t;
t = fc;
fc = tc;
tc = t;
}
if ((fc & LEFT) != 0) {
if (to.x == from.x) {
return true;
}
int t = (to.y - from.y) * (lx - from.x) / (to.x - from.x);
from.y += t;
from.x = lx;
}
if ((fc & RIGHT) != 0) {
if (to.x == from.x) {
return true;
}
int t = (to.y - from.y) * (hx - from.x) / (to.x - from.x);
from.y += t;
from.x = hx;
}
if ((fc & BOTTOM) != 0) {
if (to.y == from.y) {
return true;
}
int t = (to.x - from.x) * (ly - from.y) / (to.y - from.y);
from.x += t;
from.y = ly;
}
if ((fc & TOP) != 0) {
if (to.y == from.y) {
return true;
}
int t = (to.x - from.x) * (hy - from.y) / (to.y - from.y);
from.x += t;
from.y = hy;
}
}
}
/**
* Method to clip a polygon against a rectangular region.
* @param points an array of points that define the polygon.
* @param lx the low X bound of the clipping region.
* @param hx the high X bound of the clipping region.
* @param ly the low Y bound of the clipping region.
* @param hy the high Y bound of the clipping region.
* @return an array of Points that are clipped to the region.
*/
public static Point[] clipPoly(Point[] points, int lx, int hx, int ly, int hy) {
// see if any points are outside
int count = points.length;
int pre = 0;
for (int i = 0; i < count; i++) {
if (points[i].x < lx) {
pre |= LEFT;
} else if (points[i].x > hx) {
pre |= RIGHT;
}
if (points[i].y < ly) {
pre |= BOTTOM;
} else if (points[i].y > hy) {
pre |= TOP;
}
}
if (pre == 0) {
return points;
}
// get polygon
Point[] in = new Point[count * 2];
for (int i = 0; i < count * 2; i++) {
in[i] = new Point();
if (i < count) {
in[i].setLocation(points[i]);
}
}
Point[] out = new Point[count * 2];
for (int i = 0; i < count * 2; i++) {
out[i] = new Point();
}
// clip on all four sides
Point[] a = in;
Point[] b = out;
if ((pre & LEFT) != 0) {
count = clipEdge(a, count, b, LEFT, lx);
Point[] swap = a;
a = b;
b = swap;
}
if ((pre & RIGHT) != 0) {
count = clipEdge(a, count, b, RIGHT, hx);
Point[] swap = a;
a = b;
b = swap;
}
if ((pre & TOP) != 0) {
count = clipEdge(a, count, b, TOP, hy);
Point[] swap = a;
a = b;
b = swap;
}
if ((pre & BOTTOM) != 0) {
count = clipEdge(a, count, b, BOTTOM, ly);
Point[] swap = a;
a = b;
b = swap;
}
// remove redundant points from polygon
pre = 0;
for (int i = 0; i < count; i++) {
if (i > 0 && a[i - 1].x == a[i].x && a[i - 1].y == a[i].y) {
continue;
}
b[pre].x = a[i].x;
b[pre].y = a[i].y;
pre++;
}
// closed polygon: remove redundancy on wrap-around
while (pre != 0 && b[0].x == b[pre - 1].x && b[0].y == b[pre - 1].y) {
pre--;
}
count = pre;
// copy the polygon back if it in the wrong place
Point[] retArr = new Point[count];
for (int i = 0; i < count; i++) {
retArr[i] = b[i];
}
return retArr;
}
/**
* Method to clip polygon "in" against line "edge" (1:left, 2:right,
* 4:bottom, 8:top) and place clipped result in "out".
*/
private static int clipEdge(Point[] in, int inCount, Point[] out, int edge, int value) {
// look at all the lines
Point first = new Point();
Point second = new Point();
int firstx = 0, firsty = 0;
int outcount = 0;
for (int i = 0; i < inCount; i++) {
int pre = i - 1;
if (i == 0) {
pre = inCount - 1;
}
first.setLocation(in[pre]);
second.setLocation(in[i]);
if (clipSegment(first, second, edge, value)) {
continue;
}
int x1 = first.x;
int y1 = first.y;
int x2 = second.x;
int y2 = second.y;
if (outcount != 0) {
if (x1 != out[outcount - 1].x || y1 != out[outcount - 1].y) {
out[outcount].x = x1;
out[outcount++].y = y1;
}
} else {
firstx = x1;
firsty = y1;
}
out[outcount].x = x2;
out[outcount++].y = y2;
}
if (outcount != 0 && (out[outcount - 1].x != firstx || out[outcount - 1].y != firsty)) {
out[outcount].x = firstx;
out[outcount++].y = firsty;
}
return outcount;
}
/**
* Method to do clipping on the vector from (x1,y1) to (x2,y2).
* If the vector is completely invisible, true is returned.
*/
private static boolean clipSegment(Point p1, Point p2, int codebit, int value) {
int x1 = p1.x;
int y1 = p1.y;
int x2 = p2.x;
int y2 = p2.y;
int c1 = 0, c2 = 0;
if (codebit == LEFT) {
if (x1 < value) {
c1 = codebit;
}
if (x2 < value) {
c2 = codebit;
}
} else if (codebit == BOTTOM) {
if (y1 < value) {
c1 = codebit;
}
if (y2 < value) {
c2 = codebit;
}
} else if (codebit == RIGHT) {
if (x1 > value) {
c1 = codebit;
}
if (x2 > value) {
c2 = codebit;
}
} else if (codebit == TOP) {
if (y1 > value) {
c1 = codebit;
}
if (y2 > value) {
c2 = codebit;
}
}
if (c1 == c2) {
return c1 != 0;
}
boolean flip = false;
if (c1 == 0) {
int t = x1;
x1 = x2;
x2 = t;
t = y1;
y1 = y2;
y2 = t;
flip = true;
}
if (codebit == LEFT || codebit == RIGHT) {
long t = (y2 - y1);
t *= (value - x1);
t /= (x2 - x1);
y1 += t;
x1 = value;
} else if (codebit == BOTTOM || codebit == TOP) {
long t = (x2 - x1);
t *= (value - y1);
t /= (y2 - y1);
x1 += t;
y1 = value;
}
if (flip) {
p1.x = x2;
p1.y = y2;
p2.x = x1;
p2.y = y1;
} else {
p1.x = x1;
p1.y = y1;
p2.x = x2;
p2.y = y2;
}
return false;
}
/**
* Returns true if the first argument is the multiple of divisor.
* @param x the first argument
* @param divisor the divisor
* @return true if x
is the multiple of divisor
*/
public static boolean isMultiple(long x, long divisor) {
return (divisor & (divisor - 1)) == 0 ? (x & (divisor - 1)) == 0 : x % divisor == 0;
}
/**
* Rounds long number to multiple of divisor
in specified rounding direction.
* This method accepts any arguments but it may be slower that specialized roundToMultiple methods.
* @param x long number to round
* @param divisor divisor
* @param roundingMode rounding direction
* @return rounded multiple of divisor
* @throws ArithmeticException if rounded result doesn't fit in long
* @throws ArithmeticException if roundingMode is UNNECESSARY
and x
is not multiple of divisor
*/
public static long roundToMultiple(long x, long divisor, RoundingMode roundingMode) {
long multiple;
long modulo;
boolean oddK;
if ((divisor & (divisor - 1)) == 0) {
multiple = x & ~(divisor - 1);
modulo = x & (divisor - 1);
oddK = (x & divisor) != 0;
} else {
divisor = Math.abs(divisor);
long k = x / divisor;
multiple = k * divisor;
oddK = (k & 1) != 0;
modulo = x - multiple;
if (modulo < 0) {
multiple -= divisor;
modulo += divisor;
oddK = !oddK;
}
}
if (modulo == 0) {
if (roundingMode == null) {
throw new NullPointerException();
}
return x;
}
long cmpHalf = modulo * 2 - divisor;
boolean correction = false;
switch (roundingMode) {
case UP:
correction = x > 0;
break;
case DOWN:
correction = x < 0;
break;
case CEILING:
correction = true;
break;
case FLOOR:
correction = false;
break;
case HALF_UP:
correction = x > 0 ? cmpHalf >= 0 : cmpHalf > 0;
break;
case HALF_DOWN:
correction = x > 0 ? cmpHalf > 0 : cmpHalf >= 0;
break;
case HALF_EVEN:
correction = cmpHalf > 0 || cmpHalf == 0 && oddK;
break;
default:
throw new ArithmeticException();
}
if (correction) {
multiple += divisor;
}
if ((x^multiple) < 0 && multiple != 0) {
throw new ArithmeticException();
}
return multiple;
}
public static long roundToMultipleFloor(long x, long divisor) {
if ((divisor & (divisor - 1)) == 0) {
return x & ~(divisor - 1);
}
long multiple = x / divisor * divisor;
if (x < 0) {
long modulo = x - multiple;
if (modulo != 0) {
multiple -= Math.abs(divisor);
if (multiple >= 0) {
throw new ArithmeticException();
}
}
}
return multiple;
}
public static long roundToMultipleCeiling(long x, long divisor) {
if ((divisor & (divisor - 1)) == 0) {
if ((x & (divisor - 1)) == 0) {
return x;
}
long multiple = (x & ~(divisor - 1)) + divisor;
if (multiple == Long.MIN_VALUE) {
throw new ArithmeticException();
}
return multiple;
}
long multiple = x / divisor * divisor;
if (x >= 0) {
long modulo = x - multiple;
if (modulo != 0) {
multiple += Math.abs(divisor);
if (multiple < 0) {
throw new ArithmeticException();
}
}
}
return multiple;
}
public static long roundToMultiple(long x, long divisor) {
long multiple;
long modulo;
if ((divisor & (divisor - 1)) == 0) {
modulo = x & (divisor - 1);
if (modulo == 0) {
return x;
}
multiple = x & ~(divisor - 1);
long cmpHalf = modulo * 2 - divisor;
if (cmpHalf > 0 || cmpHalf == 0 && (x & divisor) != 0) {
multiple += divisor;
if (multiple == Long.MIN_VALUE) {
throw new ArithmeticException();
}
}
return multiple;
}
long k = x / divisor;
multiple = k * divisor;
modulo = x - multiple;
if (modulo == 0) {
return x;
}
divisor = Math.abs(divisor);
boolean oddK = (k & 1) != 0;
if (modulo < 0) {
multiple -= divisor;
modulo += divisor;
oddK = !oddK;
}
long cmpHalf = modulo * 2 - divisor;
boolean correction = cmpHalf > 0 || cmpHalf == 0 && oddK;
if (correction) {
multiple += divisor;
}
if ((x^multiple) < 0 && multiple != 0) {
throw new ArithmeticException();
}
return multiple;
}
public static long roundToMultiple0(long x, long divisor) {
if (divisor == Long.lowestOneBit(divisor)) {
return roundShift(x, divisor);
}
if (divisor <= 0) {
throw new IllegalArgumentException();
}
return x >= 0 ? roundToMultipleHalfEven(x, divisor) : -roundToMultipleHalfEven(-x, divisor);
}
private static long roundShift(long fixp, long res) {
return roundShift1(fixp, res);
}
private static long roundShift1(long fixp, long res) {
long half = res >> 1;
long resFraction = fixp & (res - 1);
if (resFraction == 0) {
return fixp;
}
long newFixp = (fixp + half) & -res;
if (resFraction == half && (fixp & res) == 0) {
newFixp &= ~res;
}
return newFixp;
}
private static long roundToMultipleHalfEven(long posFixp, long res) {
assert posFixp >= 0;
return roundDiv1(posFixp, res);
}
private static long roundDiv1(long posFixp, long res) {
long halfRes = res >> 1;
long k = posFixp / halfRes;
long newFixp = k * halfRes;
if ((k & 1) != 0) {
newFixp = newFixp != posFixp || (k & 2) != 0 ? newFixp + halfRes : newFixp - halfRes;
}
return newFixp;
}
/**
* Returns the closest long
to the argument. The result
* is rounded to an integer by adding 1/2, taking the floor of the
* result, and casting the result to type long
. In other
* words, the result is equal to the value of the expression:
* (long)Math.floor(a + 0.5d)
*
* Special cases:
*
- If the argument is NaN, the result is 0.
*
- If the argument is negative infinity or any value less than or
* equal to the value of
Long.MIN_VALUE
, the result is
* equal to the value of Long.MIN_VALUE
.
* - If the argument is positive infinity or any value greater than or
* equal to the value of
Long.MAX_VALUE
, the result is
* equal to the value of Long.MAX_VALUE
.
*
* @param x a floating-point value to be rounded to a long
.
* @return the value of the argument rounded to the nearest long
value.
* @see java.lang.Long#MAX_VALUE
* @see java.lang.Long#MIN_VALUE
*/
public static long roundLong(double x) {
return (long) (x >= 0 ? x + HALF : x - HALF);
}
public static double rint(double x) {
double twoToThe52 = (1L << 52); // 2^52
if (x >= 0) {
if (x < twoToThe52) {
return (twoToThe52 + x) - twoToThe52;
}
} else {
if (x > -twoToThe52) {
return (-twoToThe52 + x) + twoToThe52;
}
}
return x;
}
public static int roundInt(double x) {
return (int) (x >= 0 ? x + HALF : x - HALF);
}
public static long floorLong(double x) {
long v = (long) x;
return x >= 0 || v == x ? v : x > Long.MIN_VALUE ? v - 1 : Long.MIN_VALUE;
}
public static long ceilLong(double x) {
long v = (long) x;
return x <= 0 || v == x ? v : x < Long.MAX_VALUE ? v + 1 : Long.MAX_VALUE;
}
public static int floorInt(double x) {
int v = (int) x;
return x >= 0 || v == x ? v : x > Integer.MIN_VALUE ? v - 1 : Integer.MIN_VALUE;
}
public static int ceilInt(double x) {
int v = (int) x;
return x <= 0 || v == x ? v : x < Integer.MAX_VALUE ? v + 1 : Integer.MAX_VALUE;
}
// precomputed sinus table
private static final double SIN30 = 0.5;
private static final double SIN45 = 0.7071067811865476;
private static final double[] sineTable = {
0.0, 0.0017453283658983088, 0.003490651415223732, 0.00523596383141958, 0.0069812602979615525, 0.008726535498373935,
0.010471784116245792, 0.012217000835247169, 0.013962180339145272, 0.015707317311820675, 0.01745240643728351, 0.019197442399689665,
0.020942419883356957, 0.022687333572781358, 0.024432178152653153, 0.02617694830787315, 0.02792163872356888, 0.029666244085110757,
0.03141075907812829, 0.033155178388526274, 0.03489949670250097, 0.036643708706556276, 0.03838780908751994, 0.04013179253255973,
0.04187565372919962, 0.043619387365336, 0.04536298812925378, 0.04710645070964266, 0.04884976979561326, 0.05059294007671331,
0.05233595624294383, 0.05407881298477529, 0.0558215049931638, 0.057564026959567284, 0.05930637357596162, 0.061048539534856866,
0.06279051952931337, 0.06453230825295798, 0.06627390040000014, 0.06801529066524817, 0.0697564737441253, 0.07149744433268591,
0.07323819712763169, 0.0749787268263277, 0.07671902812681863, 0.07845909572784494, 0.08019892432885892, 0.08193850863004093,
0.08367784333231548, 0.08541692313736746, 0.08715574274765817, 0.08889429686644151, 0.09063258019778016, 0.09237058744656158,
0.09410831331851431, 0.095845752520224, 0.09758289975914947, 0.099319749743639, 0.10105629718294634, 0.1027925367872468,
0.10452846326765346, 0.1062640713362332, 0.10799935570602284, 0.10973431109104527, 0.11146893220632548, 0.11320321376790671,
0.11493715049286661, 0.11667073709933316, 0.11840396830650095, 0.1201368388346471, 0.12186934340514746, 0.12360147674049271,
0.12533323356430426, 0.12706460860135046, 0.1287955965775628, 0.13052619222005157, 0.13225639025712244, 0.13398618541829205,
0.13571557243430438, 0.13744454603714665, 0.13917310096006544, 0.14090123193758267, 0.14262893370551163, 0.1443562010009732,
0.14608302856241162, 0.14780941112961063, 0.14953534344370953, 0.1512608202472192, 0.15298583628403806, 0.1547103862994681,
0.15643446504023087, 0.15815806725448353, 0.15988118769183485, 0.1616038211033611, 0.16332596224162227, 0.16504760586067765,
0.16676874671610226, 0.16848937956500257, 0.17020949916603254, 0.17192910027940955, 0.17364817766693033, 0.1753667260919871,
0.1770847403195833, 0.17880221511634958, 0.18051914525055998, 0.18223552549214747, 0.18395135061272017, 0.1856666153855772,
0.1873813145857246, 0.18909544298989128, 0.19080899537654483, 0.19252196652590742, 0.19423435121997196, 0.1959461442425177,
0.19765734037912613, 0.1993679344171972, 0.20107792114596468, 0.2027872953565125, 0.20449605184179032, 0.20620418539662963,
0.20791169081775931, 0.20961856290382183, 0.21132479645538865, 0.21303038627497656, 0.2147353271670632, 0.21643961393810285,
0.21814324139654254, 0.21984620435283753, 0.2215484976194673, 0.22325011601095135, 0.22495105434386498, 0.22665130743685505,
0.22835087011065575, 0.2300497371881044, 0.23174790349415733, 0.2334453638559054, 0.23514211310259, 0.23683814606561868,
0.23853345757858088, 0.24022804247726373, 0.2419218955996677, 0.2436150117860225, 0.24530738587880258, 0.2469990127227429,
0.2486898871648548, 0.2503800040544414, 0.2520693582431136, 0.25375794458480566, 0.25544575793579055, 0.25713279315469617,
0.25881904510252074, 0.26050450864264835, 0.2621891786408647, 0.26387304996537286, 0.2655561174868088, 0.26723837607825685,
0.2689198206152657, 0.27060044597586363, 0.27228024704057435, 0.27395921869243245, 0.27563735581699916, 0.2773146533023778,
0.2789911060392293, 0.28066670892078777, 0.2823414568428764, 0.2840153447039226, 0.28568836740497355, 0.287360519849712,
0.2890317969444716, 0.2907021935982525, 0.29237170472273677, 0.29404032523230395, 0.29570805004404666, 0.29737487407778596,
0.29904079225608665, 0.3007057995042731, 0.30236989075044446, 0.3040330609254903, 0.30569530496310565, 0.30735661779980705,
0.3090169943749474, 0.3106764296307318, 0.31233491851223255, 0.31399245596740494, 0.31564903694710245, 0.3173046564050921,
0.3189593092980699, 0.32061299058567627, 0.3222656952305111, 0.3239174181981494, 0.3255681544571567, 0.3272178989791039,
0.32886664673858323, 0.330514392713223, 0.3321611318837033, 0.3338068592337709, 0.335451569750255, 0.3370952584230821,
0.3387379202452914, 0.34037955021305016, 0.3420201433256687, 0.34365969458561607, 0.34529819899853464, 0.34693565157325584,
0.3485720473218152, 0.35020738125946743, 0.3518416484047018, 0.3534748437792571, 0.35510696240813705, 0.3567379993196252,
0.35836794954530027, 0.3599968081200512, 0.3616245700820923, 0.36325123047297836, 0.3648767843376196, 0.36650122672429725,
0.3681245526846779, 0.3697467572738293, 0.3713678355502348, 0.37298778257580895, 0.37460659341591207, 0.3762242631393656,
0.3778407868184671, 0.3794561595290051, 0.3810703763502741, 0.3826834323650898, 0.3842953226598037, 0.38590604232431863,
0.38751558645210293, 0.38912395014020623, 0.39073112848927377, 0.39233711660356146, 0.3939419095909511, 0.39554550256296495,
0.3971478906347806, 0.3987490689252462, 0.4003490325568949, 0.4019477766559601, 0.40354529635239, 0.4051415867798625,
0.40673664307580015, 0.40833046038138493, 0.4099230338415728, 0.41151435860510877, 0.41310442982454176, 0.414693242656239,
0.41628079226040116, 0.41786707380107674, 0.4194520824461771, 0.421035813367491, 0.4226182617406994, 0.4241994227453902,
0.42577929156507266, 0.4273578633871924, 0.4289351334031459, 0.43051109680829514, 0.4320857488019823, 0.43365908458754426,
0.43523109937232746, 0.43680178836770217, 0.4383711467890774, 0.4399391698559151, 0.4415058527917452, 0.44307119082417973,
0.4446351791849275, 0.44619781310980877, 0.44775908783876966, 0.4493189986158966, 0.45087754068943076, 0.4524347093117827,
0.45399049973954675, 0.4555449072335155, 0.4570979270586942, 0.45864955448431494, 0.46019978478385165, 0.4617486132350339,
0.4632960351198617, 0.4648420457246196, 0.4663866403398912, 0.46792981426057334, 0.46947156278589075, 0.47101188121940996,
0.47255076486905395, 0.4740882090471163, 0.47562420907027525, 0.4771587602596084, 0.4786918579406068, 0.48022349744318893,
0.4817536741017153, 0.4832823832550024, 0.48480962024633695, 0.48633538042349045, 0.4878596591387326, 0.4893824517488462,
0.4909037536151409, 0.49242356010346716, 0.493941866584231, 0.4954586684324075, 0.49697396102755526, 0.49848773975383026,
SIN30, 0.5015107371594573, 0.503019946630235, 0.5045276238150193, 0.5060337641211637, 0.5075383629607041,
0.5090414157503713, 0.5105429179116057, 0.5120428648705715, 0.51354125205817, 0.5150380749100542, 0.5165333288666418,
0.5180270093731302, 0.5195191118795094, 0.5210096318405764, 0.5224985647159488, 0.5239859059700791, 0.5254716510722678,
0.5269557954966776, 0.5284383347223471, 0.5299192642332049, 0.5313985795180829, 0.53287627607073, 0.5343523493898263,
0.5358267949789967, 0.5372996083468239, 0.5387707850068629, 0.540240320477655, 0.5417082102827397, 0.5431744499506707,
0.544639035015027, 0.5461019610144291, 0.5475632234925503, 0.5490228179981317, 0.5504807400849956, 0.5519369853120581,
0.5533915492433441, 0.5548444274479992, 0.5562956155003048, 0.5577451089796901, 0.5591929034707469, 0.5606389945632416,
0.5620833778521306, 0.5635260489375715, 0.5649670034249379, 0.5664062369248328, 0.5678437450531012, 0.5692795234308442,
0.5707135676844316, 0.5721458734455162, 0.573576436351046, 0.5750052520432786, 0.5764323161697932, 0.5778576243835053,
0.5792811723426788, 0.5807029557109398, 0.5821229701572894, 0.5835412113561175, 0.5849576749872154, 0.5863723567357892,
0.5877852522924731, 0.589196357353342, 0.5906056676199254, 0.5920131787992196, 0.5934188866037015, 0.5948227867513413,
0.5962248749656158, 0.5976251469755212, 0.5990235985155858, 0.600420225325884, 0.6018150231520482, 0.6032079877452825,
0.6045991148623747, 0.605988400265711, 0.6073758397232867, 0.6087614290087207, 0.6101451639012676, 0.6115270401858311,
0.6129070536529765, 0.6142852000989432, 0.6156614753256583, 0.6170358751407485, 0.6184083953575542, 0.61977903179514,
0.6211477802783103, 0.6225146366376195, 0.6238795967093861, 0.6252426563357052, 0.6266038113644604, 0.6279630576493379,
0.6293203910498374, 0.6306758074312863, 0.6320293026648508, 0.6333808726275502, 0.6347305132022676, 0.636078220277764,
0.6374239897486897, 0.6387678175155976, 0.6401096994849556, 0.6414496315691578, 0.6427876096865393, 0.6441236297613865,
0.6454576877239505, 0.6467897795104596, 0.6481199010631309, 0.6494480483301835, 0.6507742172658509, 0.6520984038303922,
0.6534206039901054, 0.6547408137173397, 0.6560590289905073, 0.6573752457940958, 0.6586894601186803, 0.6600016679609367,
0.6613118653236518, 0.6626200482157375, 0.6639262126522416, 0.6652303546543609, 0.6665324702494525, 0.6678325554710466,
0.6691306063588582, 0.6704266189587991, 0.6717205893229902, 0.6730125135097733, 0.6743023875837234, 0.6755902076156601,
0.6768759696826607, 0.6781596698680706, 0.6794413042615165, 0.6807208689589178, 0.6819983600624985, 0.6832737736807992,
0.6845471059286886, 0.6858183529273763, 0.687087510804423, 0.6883545756937539, 0.6896195437356697, 0.6908824110768583,
0.6921431738704068, 0.693401828275813, 0.6946583704589974, 0.6959127965923143, 0.6971651028545645, 0.6984152854310058,
0.6996633405133654, 0.7009092642998509, 0.7021530529951624, 0.7033947028105039, 0.7046342099635946, 0.705871570678681,
SIN45, 0.7083398377245288, 0.7095707365365209, 0.7107994738729925, 0.7120260459909965, 0.7132504491541816,
0.7144726796328033, 0.7156927337037359, 0.7169106076504826, 0.7181262977631888, 0.7193398003386512, 0.7205511116803304,
0.7217602280983622, 0.7229671459095681, 0.7241718614374675, 0.7253743710122875, 0.7265746709709759, 0.7277727576572104,
0.7289686274214116, 0.7301622766207523, 0.7313537016191705, 0.7325428987873788, 0.7337298645028764, 0.7349145951499599,
0.7360970871197343, 0.7372773368101241, 0.7384553406258837, 0.7396310949786097, 0.74080459628675, 0.7419758409756163,
0.7431448254773942, 0.744311546231154, 0.7454759996828623, 0.7466381822853914, 0.7477980904985319, 0.7489557207890021,
0.7501110696304595, 0.7512641335035111, 0.7524149088957244, 0.7535633923016378, 0.754709580222772, 0.7558534691676396,
0.7569950556517564, 0.7581343361976522, 0.7592713073348808, 0.7604059656000309, 0.7615383075367367, 0.7626683296956883,
0.7637960286346421, 0.7649214009184317, 0.7660444431189779, 0.7671651518152995, 0.7682835235935234, 0.7693995550468951,
0.7705132427757893, 0.77162458338772, 0.7727335734973511, 0.7738402097265061, 0.7749444887041796, 0.7760464070665459,
0.7771459614569709, 0.778243148526021, 0.7793379649314741, 0.7804304073383297, 0.7815204724188187, 0.7826081568524139,
0.7836934573258397, 0.7847763705330829, 0.7858568931754019, 0.7869350219613374, 0.7880107536067219, 0.7890840848346907,
0.7901550123756903, 0.79122353296749, 0.7922896433551907, 0.7933533402912352, 0.7944146205354181, 0.7954734808548958,
0.7965299180241963, 0.7975839288252284, 0.7986355100472928, 0.7996846584870905, 0.8007313709487335, 0.801775644243754,
0.8028174751911145, 0.8038568606172174, 0.8048937973559142, 0.8059282822485158, 0.8069603121438019, 0.8079898838980305,
0.8090169943749475, 0.810041640445796, 0.8110638189893266, 0.8120835268918062, 0.8131007610470277, 0.8141155183563192,
0.8151277957285542, 0.8161375900801602, 0.8171448983351285, 0.8181497174250234, 0.8191520442889918, 0.820151875873772,
0.821149209133704, 0.8221440410307373, 0.8231363685344418, 0.8241261886220157, 0.8251134982782952, 0.8260982944957639,
0.8270805742745618, 0.8280603346224944, 0.8290375725550416, 0.8300122850953675, 0.8309844692743282, 0.8319541221304826,
0.8329212407100994, 0.8338858220671681, 0.8348478632634065, 0.8358073613682702, 0.8367643134589617, 0.8377187166204387,
0.838670567945424, 0.8396198645344132, 0.8405666034956842, 0.8415107819453062, 0.8424523970071476, 0.8433914458128856,
0.8443279255020151, 0.8452618332218561, 0.846193166127564, 0.8471219213821372, 0.8480480961564258, 0.8489716876291414,
0.8498926929868639, 0.8508111094240512, 0.8517269341430476, 0.8526401643540922, 0.8535507972753273, 0.8544588301328074,
0.8553642601605067, 0.8562670846003282, 0.8571673007021123, 0.8580649057236446, 0.8589598969306644, 0.8598522715968734,
0.8607420270039435, 0.8616291604415257, 0.8625136692072574, 0.8633955506067716, 0.8642748019537047, 0.8651514205697045,
0.8660254037844386, 0.8668967489356028, 0.8677654533689284, 0.8686315144381913, 0.869494929505219, 0.8703556959398997,
0.8712138111201894, 0.8720692724321206, 0.8729220772698096, 0.8737722230354652, 0.8746197071393957, 0.8754645270000179,
0.8763066800438636, 0.8771461637055887, 0.8779829754279805, 0.8788171126619653, 0.8796485728666165, 0.8804773535091619,
0.8813034520649922, 0.8821268660176678, 0.8829475928589269, 0.8837656300886935, 0.8845809752150839, 0.8853936257544159,
0.8862035792312147, 0.8870108331782217, 0.8878153851364013, 0.8886172326549489, 0.8894163732912975, 0.8902128046111265,
0.8910065241883678, 0.891797529605214, 0.8925858184521255, 0.8933713883278375, 0.8941542368393681, 0.894934361602025,
0.8957117602394129, 0.8964864303834404, 0.8972583696743284, 0.8980275757606155, 0.898794046299167, 0.8995577789551804,
0.9003187714021935, 0.9010770213220917, 0.9018325264051138, 0.9025852843498605, 0.9033352928633008, 0.9040825496607783,
0.9048270524660196, 0.9055687990111395, 0.9063077870366499, 0.9070440142914649, 0.9077774785329086, 0.9085081775267219,
0.9092361090470685, 0.9099612708765432, 0.910683660806177, 0.9114032766354453, 0.912120116172273, 0.9128341772330428,
0.9135454576426009, 0.9142539552342637, 0.9149596678498249, 0.915662593339561, 0.9163627295622396, 0.917060074385124,
0.917754625683981, 0.9184463813430871, 0.9191353392552345, 0.9198214973217376, 0.9205048534524403, 0.9211854055657211,
0.9218631515885005, 0.9225380894562464, 0.9232102171129808, 0.9238795325112867, 0.9245460336123131, 0.9252097183857821,
0.9258705848099947, 0.9265286308718373, 0.9271838545667874, 0.92783625389892, 0.9284858268809135, 0.9291325715340562,
0.9297764858882513, 0.9304175679820246, 0.9310558158625283, 0.9316912275855489, 0.9323238012155122, 0.9329535348254889,
0.9335804264972017, 0.9342044743210295, 0.9348256763960144, 0.9354440308298673, 0.9360595357389733, 0.9366721892483976,
0.9372819894918915, 0.9378889346118976, 0.9384930227595559, 0.9390942520947091, 0.9396926207859083, 0.9402881270104189,
0.9408807689542255, 0.9414705448120378, 0.9420574527872967, 0.9426414910921784, 0.943222657947601, 0.9438009515832294,
0.9443763702374811, 0.9449489121575309, 0.9455185755993167, 0.9460853588275453, 0.9466492601156964, 0.9472102777460288,
0.9477684100095857, 0.9483236552061993, 0.9488760116444965, 0.9494254776419038, 0.9499720515246525, 0.9505157316277837,
0.9510565162951535, 0.9515944038794382, 0.9521293927421386, 0.9526614812535863, 0.953190667792947, 0.9537169507482268,
0.9542403285162768, 0.9547607995027975, 0.9552783621223436, 0.9557930147983301, 0.9563047559630354, 0.9568135840576074,
0.9573194975320672, 0.9578224948453149, 0.9583225744651332, 0.958819734868193, 0.9593139745400575, 0.9598052919751869,
0.9602936856769431, 0.9607791541575941, 0.9612616959383188, 0.9617413095492113, 0.9622179935292854, 0.9626917464264787,
0.9631625667976581, 0.9636304532086231, 0.9640954042341101, 0.9645574184577981, 0.9650164944723114, 0.9654726308792251,
0.9659258262890683, 0.9663760793213293, 0.9668233886044594, 0.9672677527758767, 0.9677091704819711, 0.9681476403781077,
0.9685831611286311, 0.9690157314068695, 0.9694453498951389, 0.9698720152847469, 0.9702957262759965, 0.9707164815781908,
0.971134279909636, 0.9715491199976461, 0.9719610005785463, 0.9723699203976766, 0.9727758782093965, 0.9731788727770883,
0.9735789028731602, 0.9739759672790516, 0.9743700647852352, 0.9747611941912218, 0.9751493543055632, 0.9755345439458565,
0.9759167619387474, 0.9762960071199334, 0.9766722783341679, 0.9770455744352635, 0.9774158942860959, 0.9777832367586061,
0.9781476007338056, 0.9785089851017784, 0.978867388761685, 0.9792228106217657, 0.9795752495993441, 0.9799247046208296,
0.9802711746217219, 0.980614658546613, 0.9809551553491915, 0.9812926639922451, 0.981627183447664, 0.9819587126964436,
0.9822872507286887, 0.9826127965436152, 0.9829353491495543, 0.9832549075639545, 0.9835714708133859, 0.9838850379335417,
0.9841956079692419, 0.9845031799744366, 0.984807753012208, 0.9851093261547739, 0.9854078984834901, 0.9857034690888535,
0.9859960370705049, 0.9862856015372313, 0.9865721616069694, 0.9868557164068072, 0.9871362650729879, 0.9874138067509114,
0.9876883405951377, 0.9879598657693891, 0.9882283814465528, 0.9884938868086836, 0.9887563810470058, 0.9890158633619168,
0.9892723329629883, 0.9895257890689694, 0.989776230907789, 0.9900236577165575, 0.9902680687415704, 0.9905094632383088,
0.9907478404714436, 0.9909831997148363, 0.9912155402515417, 0.9914448613738104, 0.9916711623830904, 0.9918944425900297,
0.9921147013144778, 0.9923319378854887, 0.992546151641322, 0.9927573419294455, 0.9929655081065369, 0.9931706495384861,
0.9933727656003964, 0.9935718556765875, 0.9937679191605964, 0.9939609554551797, 0.9941509639723154, 0.9943379441332046,
0.9945218953682733, 0.9947028171171742, 0.9948807088287882, 0.9950555699612263, 0.9952273999818312, 0.9953961983671789,
0.99556196460308, 0.9957246981845821, 0.9958843986159703, 0.9960410654107695, 0.9961946980917455, 0.9963452961909064,
0.9964928592495044, 0.9966373868180366, 0.9967788784562471, 0.996917333733128, 0.9970527522269202, 0.9971851335251157,
0.9973144772244581, 0.997440782930944, 0.9975640502598242, 0.9976842788356053, 0.99780146829205, 0.997915618272179,
0.9980267284282716, 0.9981347984218669, 0.9982398279237653, 0.9983418166140283, 0.998440764181981, 0.9985366703262117,
0.9986295347545738, 0.9987193571841863, 0.998806137341434, 0.99888987496197, 0.9989705697907146, 0.9990482215818578,
0.9991228300988584, 0.999194395114446, 0.9992629164106211, 0.9993283937786562, 0.9993908270190958, 0.9994502159417572,
0.9995065603657316, 0.999559860119384, 0.9996101150403544, 0.9996573249755573, 0.9997014897811831, 0.9997426093226983,
0.9997806834748455, 0.9998157121216442, 0.9998476951563913, 0.9998766324816606, 0.9999025240093042, 0.999925369660452,
0.9999451693655121, 0.9999619230641713, 0.9999756307053947, 0.9999862922474267, 0.9999939076577904, 0.9999984769132877,
1.0};
/**
* Method to compute the sine of an integer angle (in tenth-degrees).
* @param angle the angle in tenth-degrees.
* @return the sine of that angle.
*/
public static double sin(int angle) {
while (angle < 0) {
angle += 3600;
}
if (angle >= 3600) {
angle %= 3600;
}
if (angle <= 900) {
return sineTable[angle];
}
if (angle <= 1800) {
return sineTable[1800 - angle];
}
if (angle <= 2700) {
return -sineTable[angle - 1800];
}
return -sineTable[3600 - angle];
}
/**
* Method to compute the cosine of an integer angle (in tenth-degrees).
* @param angle the angle in tenth-degrees.
* @return the cosine of that angle.
*/
public static double cos(int angle) {
while (angle < 0) {
angle += 3600;
}
if (angle >= 3600) {
angle %= 3600;
}
if (angle <= 900) {
return sineTable[900 - angle];
}
if (angle <= 1800) {
return -sineTable[angle - 900];
}
if (angle <= 2700) {
return -sineTable[2700 - angle];
}
return sineTable[angle - 2700];
}
/**
* Method to compute the sine of a small integer angle (in tenth-degrees).
* @param angle the angle in tenth-degrees in range 0..900.
* @return the sine of that angle.
*/
public static double sinSmall(int angle) {
return sineTable[angle];
}
/**
* Method to compute the cosine of a small integer angle (in tenth-degrees).
* @param angle the angle in tenth-degrees in range [0..900].
* @return the cosine of that angle.
*/
public static double cosSmall(int angle) {
return sineTable[900 - angle];
}
/**
* Returns Cartesian coordinates of a vector specified in polar coordinates.
* Result vector has integer components.
* Euclidean length of result vector is not less than specified length.
* Components of result vector are packed in a long value:
* x is in 32 less significant bits, y is in 32 most significant bits.
* @param len positive vector length
* @param angle the angle in tenth-degrees in range [0..3600).
* @return vector packed in a long value.
* @see com.sun.electric.util.math.GenMath#getX(long)
* @see com.sun.electric.util.math.GenMath#getY(long)
*/
public static long polarToXY(int len, int angle) {
if (len == 0) {
return 0;
}
assert len > 0;
int x = 0, y = 0;
switch (angle) {
case 0:
x = len;
break;
case 900:
y = len;
break;
case 1800:
x = -len;
break;
case 2700:
y = -len;
break;
case 450:
x = y = (int) (len * SIN45) + 1;
break;
case 1350:
x = -(y = (int) (len * SIN45) + 1);
break;
case 2250:
x = y = -(int) (len * SIN45) - 1;
break;
case 3150:
y = -(x = (int) (len * SIN45) + 1);
break;
default:
if (angle < 1800) {
if (angle < 900) {
x = (int) (len * GenMath.cosSmall(angle)) + 1;
y = (int) (len * GenMath.sinSmall(angle)) + 1;
} else {
angle -= 900;
x = -(int) (len * GenMath.sinSmall(angle)) - 1;
y = (int) (len * GenMath.cosSmall(angle)) + 1;
}
} else {
if (angle < 2700) {
angle -= 1800;
x = -(int) (len * GenMath.cosSmall(angle)) - 1;
y = -(int) (len * GenMath.sinSmall(angle)) - 1;
} else {
angle -= 2700;
x = (int) (len * GenMath.sinSmall(angle)) + 1;
y = -(int) (len * GenMath.cosSmall(angle)) - 1;
}
}
}
// return packed x and y
return packXY(x, y);
}
/**
* Pack a pair of integer coordinates in a long value.
* x is packed in a low half, and y is packed in a high half of the long.
* Use getX
and getY
to unpack coordiantes.
* @param x x-coordinate
* @param y y-coordinate
* @return a long value with a packed pair of coordinates.
* @see com.sun.electric.util.math.GenMath#getX(long)
* @see com.sun.electric.util.math.GenMath#getY(long)
*/
public static long packXY(int x, int y) {
return (x & 0xFFFFFFFFL) | ((long) (y)) << 32;
}
/**
* Returns x coordinate packed in a long value by packXY
.
* @see com.sun.electric.util.math.GenMath#packXY(int, int)
*/
public static int getX(long xy) {
return (int) xy;
}
/**
* Returns y coordinate packed in a long value by packXY
.
* @see com.sun.electric.util.math.GenMath#packXY(int, int)
*/
public static int getY(long xy) {
return (int) (xy >> 32);
}
/**
* Method to return a long that represents the unsigned
* value of an integer. I.e., the passed int is a set of
* bits, and this method returns a number as if those bits
* were interpreted as an unsigned int.
*/
public static long unsignedIntValue(int n) {
return n & 0xFFFFFFFFL;
}
/**
* Returns true if specified long value is considered "small int".
* Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
* @param v specified long value.
* @return true if specified long value is considered "small int".
*/
public static boolean isSmallInt(long v) {
return ((v - MIN_SMALL_COORD) & Integer.MIN_VALUE) == 0;
}
/**
* Returns true if specified int value is considered "small int".
* Sum and difference of two "small ints" is always in [Integer.MIN_VALUE..Integer.MAX_VALUE] range.
* @param v specified int value.
* @return true if specified int value is considered "small int".
*/
public static boolean isSmallInt(int v) {
return ((v - MIN_SMALL_COORD) & Integer.MIN_VALUE) == 0;
}
/**
** Method to return a prime number greater or equal than a give threshold.
* It is possible for every "int" threshold because Integer.MAX_VALUE is
* a prime number. Prime number is choosen from a table based on table from
* Knuth's book.
* @param x threshold
* @return a prime number
*/
public static int primeSince(int x) {
int i = 0;
while (prime[i] < x) {
i++;
}
return prime[i];
}
/**
* Prime numbers from Knuth's book.
**/
private static final int[] prime = {
(1 << 2) - 1,
(1 << 3) - 1,
(1 << 4) - 3,
(1 << 5) - 1,
(1 << 6) - 3,
(1 << 7) - 1,
(1 << 8) - 5,
(1 << 9) - 3,
(1 << 10) - 3,
(1 << 11) - 9,
(1 << 12) - 3,
(1 << 13) - 1,
(1 << 14) - 3,
(1 << 15) - 19,
(1 << 16) - 15,
(1 << 17) - 1,
(1 << 18) - 5,
(1 << 19) - 1,
(1 << 20) - 3,
(1 << 21) - 9,
(1 << 22) - 3,
(1 << 23) - 15,
(1 << 24) - 3,
(1 << 25) - 39,
(1 << 26) - 5,
(1 << 27) - 39,
(1 << 28) - 57,
(1 << 29) - 3,
(1 << 30) - 35,
(1 << 31) - 1
};
/**
* Calculate the variance of a given, equal distributed array of doubles.
* @param values
* @param mean
* @return variance
*/
public static double varianceEqualDistribution(double[] values, double mean) {
double var = 0.0;
for (int i = 0; i < values.length; i++) {
var += Math.pow((double) values[i] - mean, 2.0);
}
return var / (double) values.length;
}
/**
* Calculate the variance of a given, equal distributed array of doubles.
* @param values
* @return variance
*/
public static double varianceEqualDistribution(double[] values) {
double mean = GenMath.meanEqualDistribution(values);
return varianceEqualDistribution(values, mean);
}
/**
* Calculate the mean of a given, equal distributed array of doubles.
* @param values
* @return variance
*/
public static double meanEqualDistribution(double[] values) {
double mean = 0.0;
for (int i = 0; i < values.length; i++) {
mean += values[i];
}
return mean / (double) values.length;
}
/**
* Calculate the standard deviation of a given, equal distributed array of doubles.
* @param values
* @return variance
*/
public static double standardDeviation(double[] values) {
double var = GenMath.varianceEqualDistribution(values);
return Math.sqrt(var);
}
}